Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use artificial neural networks to predict new stable materials

18.09.2018

Artificial neural networks--algorithms inspired by connections in the brain--have "learned" to perform a variety of tasks, from pedestrian detection in self-driving cars, to analyzing medical images, to translating languages. Now, researchers at the University of California San Diego are training artificial neural networks to predict new stable materials.

"Predicting the stability of materials is a central problem in materials science, physics and chemistry," said senior author Shyue Ping Ong, a nanoengineering professor at the UC San Diego Jacobs School of Engineering.


Schematic of an artificial neural network predicting a stable garnet crystal prototype.

Credit: Weike Ye

"On one hand, you have traditional chemical intuition such as Linus Pauling's five rules that describe stability for crystals in terms of the radii and packing of ions. On the other, you have expensive quantum mechanical computations to calculate the energy gained from forming a crystal that have to be done on supercomputers. What we have done is to use artificial neural networks to bridge these two worlds."

By training artificial neural networks to predict a crystal's formation energy using just two inputs--electronegativity and ionic radius of the constituent atoms--Ong and his team at the Materials Virtual Lab have developed models that can identify stable materials in two classes of crystals known as garnets and perovskites.

These models are up to 10 times more accurate than previous machine learning models and are fast enough to efficiently screen thousands of materials in a matter of hours on a laptop. The team details the work in a paper published Sept. 18 in Nature Communications.

"Garnets and perovskites are used in LED lights, rechargeable lithium-ion batteries, and solar cells. These neural networks have the potential to greatly accelerate the discovery of new materials for these and other important applications," noted first author Weike Ye, a chemistry Ph.D. student in Ong's Materials Virtual Lab.

The team has made their models publicly accessible via a web application at http://crystals.ai. This allows other people to use these neural networks to compute the formation energy of any garnet or perovskite composition on the fly.

The researchers are planning to extend the application of neural networks to other crystal prototypes as well as other material properties.

###

Paper title: "Deep Neural Networks for Accurate Predictions of Crystal Stability." Co-authors include Chi Chen, Zhenbin Wang and Iek-Heng Chu, UC San Diego.

This work is supported by the Samsung Advanced Institute of Technology's Global Research Outreach Program.

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-018-06322-x

More articles from Information Technology:

nachricht Man versus machine: Can AI do science?
14.01.2020 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Beyond 5G lab: Communication technology of the future
13.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>