Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers move closer to completely optical artificial neural network

23.07.2018

Optical training of neural networks could lead to more efficient artificial intelligence

Researchers have shown that it is possible to train artificial neural networks directly on an optical chip. The significant breakthrough demonstrates that an optical circuit can perform a critical function of an electronics-based artificial neural network and could lead to less expensive, faster and more energy efficient ways to perform complex tasks such as speech or image recognition.


Researchers have shown a neural network can be trained using an optical circuit (blue rectangle in the illustration). In the full network there would be several of these linked together. The laser inputs (green) encode information that is carried through the chip by optical waveguides (black). The chip performs operations crucial to the artificial neural network using tunable beam splitters, which are represented by the curved sections in the waveguides. These sections couple two adjacent waveguides together and are tuned by adjusting the settings of optical phase shifters (red and blue glowing objects), which act like 'knobs' that can be adjusted during training to perform a given task.

Credit: Tyler W. Hughes, Stanford University

"Using an optical chip to perform neural network computations more efficiently than is possible with digital computers could allow more complex problems to be solved," said research team leader Shanhui Fan of Stanford University. "This would enhance the capability of artificial neural networks to perform tasks required for self-driving cars or to formulate an appropriate response to a spoken question, for example. It could also improve our lives in ways we can't imagine now."

An artificial neural network is a type of artificial intelligence that uses connected units to process information in a manner similar to the way the brain processes information. Using these networks to perform a complex task, for instance voice recognition, requires the critical step of training the algorithms to categorize inputs, such as different words.

Although optical artificial neural networks were recently demonstrated experimentally, the training step was performed using a model on a traditional digital computer and the final settings were then imported into the optical circuit. In Optica, The Optical Society's journal for high impact research, Stanford University researchers report a method for training these networks directly in the device by implementing an optical analogue of the 'backpropagation' algorithm, which is the standard way to train conventional neural networks.

"Using a physical device rather than a computer model for training makes the process more accurate," said Tyler W. Hughes, first author of the paper. "Also, because the training step is a very computationally expensive part of the implementation of the neural network, performing this step optically is key to improving the computational efficiency, speed and power consumption of artificial networks."

A light-based network

Although neural network processing is typically performed using a traditional computer, there are significant efforts to design hardware optimized specifically for neural network computing. Optics-based devices are of great interest because they can perform computations in parallel while using less energy than electronic devices.

In the new work, the researchers overcame a significant challenge to implementing an all-optical neural network by designing an optical chip that replicates the way that conventional computers train neural networks.

An artificial neural network can be thought of as a black box with a number of knobs. During the training step, these knobs are each turned a little and then the system is tested to see if the performance of the algorithms improved.

"Our method not only helps predict which direction to turn the knobs but also how much you should turn each knob to get you closer to the desired performance," said Hughes. "Our approach speeds up training significantly, especially for large networks, because we get information about each knob in parallel."

On-chip training

The new training protocol operates on optical circuits with tunable beam splitters that are adjusted by changing the settings of optical phase shifters. Laser beams encoding information to be processed are fired into the optical circuit and carried by optical waveguides through the beam splitters, which are adjusted like knobs to train the neural network algorithms.

In the new training protocol, the laser is first fed through the optical circuit. Upon exiting the device, the difference from the expected outcome is calculated. This information is then used to generate a new light signal, which is sent back through the optical network in the opposite direction. By measuring the optical intensity around each beam splitter during this process, the researchers showed how to detect, in parallel, how the neural network performance will change with respect to each beam splitter's setting. The phase shifter settings can be changed based on this information, and the process may be repeated until the neural network produces the desired outcome.

The researchers tested their training technique with optical simulations by teaching an algorithm to perform complicated functions, such as picking out complex features within a set of points. They found that the optical implementation performed similarly to a conventional computer.

"Our work demonstrates that you can use the laws of physics to implement computer science algorithms," said Fan. "By training these networks in the optical domain, it shows that optical neural network systems could be built to carry out certain functionalities using optics alone."

The researchers plan to further optimize the system and want to use it to implement a practical application of a neural network task. The general approach they designed could be used with various neural network architectures and for other applications such as reconfigurable optics.

###

Paper: T. W. Hughes, M. Minkov, Y. Shi, S. Fan, "Training of photonic neural networks through in situ backpropagation and gradient measurement," Optica, Volume 5,Issue , pages 864-871 (2018)

DOI: https://doi.org/10.1364/OPTICA.5.000864

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 50 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

Azalea Coste
acoste@osa.org

http://www.osa.org 

Azalea Coste | EurekAlert!
Further information:
http://dx.doi.org/10.1364/OPTICA.5.000864

Further reports about: artificial neural network neural network

More articles from Information Technology:

nachricht Shaping nanoparticles for improved quantum information technology
15.10.2019 | DOE/Argonne National Laboratory

nachricht Controlling superconducting regions within an exotic metal
11.10.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>