Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program automates chip debugging

07.11.2007
Fixing design bugs and wrong wire connections in computer chips after they've been fabricated in silicon is a tedious, trial-and-error process that often costs companies millions of dollars and months of time-to-market.

Engineering researchers at the University of Michigan say it doesn't have to be that way. They've developed a new technology to automate "post-silicon debugging."

"Today's silicon technology has reached such levels of small-scale fabrication and of sheer complexity that it is almost impossible to produce computer chips that work correctly under all scenarios," said Valeria Bertacco, assistant professor of electrical engineering and computer science and co-investigator in the new technology. "Almost all manufacturers must produce several prototypes of a given design before they attain a working chip."

FogClear, as the new method is called, uses puzzle-solving search algorithms to diagnose problems early on and automatically adjust the blueprint for the chip. It reduces parts of the process from days to hours.

"Practically all complicated chips have bugs and finding all bugs is intractable," said Igor Markov, associate professor of computer science and electrical engineering and another of FogClear's developers. "It's a paradox. Today, manufacturers are producing chips that must work for almost all applications, from e-mail to chess, but they cannot be validated for every possible condition. It's physically impossible."

In the current system, a chip design is first validated in simulations. Then a draft is cast in silicon, and this first prototype undergoes additional verification with more realistic applications. If a bug is detected at this stage, an engineer must narrow down the cause of the problem and then craft a fix that does not disrupt the delicate balance of all other components of the system. This can take several days. Engineers then produce new prototypes incorporating all the fixes. This process repeats until they arrive at a prototype that is free of bugs. For modern chips, the process of making sure a chip is free of bugs takes as much time as production.

"Bugs found post-silicon are often very difficult to diagnose and repair because it is difficult to monitor and control the signals that are buried inside a silicon die, or chip. Up until now engineers have handled post-silicon debugging more as an art than a science," said Kai-Hui Chang, a recent doctoral graduate who will present a paper on FogClear at the upcoming International Conference on Computer-Aided Design.

FogClear automates this debugging process. The computer-aided design tool can catch subtle errors that several months of simulations would still miss. Some bugs might take days or weeks before causing any miscomputation, and they might only do so under very rare circumstances, such as operating at high temperature. The new application searches for and finds the simplest way to fix a bug, the one that has the least impact on the working parts of the chip. The solution usually requires reconnecting certain wires, and does not affect transistors.

Chang, who received his doctorate in electrical engineering and computer science from U-M in August, will present Nov. 6 at the International Conference on Computer-Aided Design in San Jose, California. The paper is titled "Automating Post-Silicon Debugging and Repair." Markov and Bertacco are co-authors with Chang.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>