Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic optic fibres

29.11.2004


Plastic optic fibres are 1-millimetre diameter threads, similar to a guitar string. Nowadays, optic fibres are used in the home, cars, trains and aeroplanes, for example.



How is the information transmitted?

At one end of the fibre the light source, either LED or laser, is attached. Lasers are faster and, thereby, can send greater quantities of information; but they are also more expensive.


Light emanating from the source will immediately propagate through the fibre and arrive at the other end where a receptor system is installed. Here this signal is interpreted as a 1. But, if the light beam is interrupted, the signal will not arrive at the receptor and, as a result, this will read 0. This is how images, texts and all kinds of digital information are transmitted, given that, in digital systems, information is codified by means of a binary system of ones and zeros.

Apart from transmitting information, optic fibres can also be used to make sensors. For example, in the automotive sector, they are regularly used in car safety systems such as indicating the need to change the engine oil.

The sensor immersed in the oil will be subjected to variations in the quantity of light transmitted depending on the increase in impurities in the oil. Thus, the moment there is no longer sufficient light getting to the receptor is when this sends a signal to change the oil. This is just one example of the use of an optic fibre sensor, but there are many more.

All advantages

Apart from having an infinity of applications, plastic optic fibres have many advantages: they are cheap, being made of metacrylate, a very common plastic. The connectors required are also cheap and simple. The fibres are light, a car weighing up to 50 kg less if the wiring is carried out with plastic fibres. And perhaps the most important advantage: the transported signal does not produce interference given that the electromagnetic fields and the rest of the electrical signals do not influence the plastic.

However, there are disadvantages also. They are not suitable over large distances as they produce losses in the transmission of light. As a consequence, the optic fibres have a maximum of one kilometre length; for longer distances glass optic fibres are used. Moreover, they cannot operate at temperatures greater than 80º C, given that the plastic melts and the fibre loses the transparency necessary for correctly transmitting the light. Finally, if there are many buckles or curves along the way, there are also losses of light at these points.

Research at the EHU (the University of the Basque Country)

At the School of Engineering in Bilbao a research team is working on plastic optic fibres. In their research they have designed software that simulates the way in which light is propagated down a plastic optic fibre, a tool that a number of companies already use. Moreover, they design and develop new devices or sensors based on plastic optic fibres. Finally, it should be pointed out that they have also worked with the automotive sector, analysing, above all, the losses produced in the wiring in the car at kinks and corners and, in this way, to be able to adapt the topology and minimise signal losses.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com
http://www.ehu.es

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>