Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic Voting System is Vulnerable to Tampering

25.07.2003


Computer Researchers Find Critical Flaws in Popular Software Produced for U.S. Elections


Avi Rubin, technical director of the Information Security Institute at Johns Hopkins University

Photo by Will Kirk



The software believed to be at the heart of an electronic voting system being marketed for use in elections across the nation has weaknesses that could easily allow someone to cast multiple votes for one candidate, computer security researchers at The Johns Hopkins University have determined.

The researchers reached this conclusion after studying computer code believed to be for Ohio-based Diebold Election Systems’ electronic voting equipment. The code, which included modifications made through 2002, was posted anonymously to a public Web site earlier this year. During 2002, approximately 33,000 Diebold voting stations, which allow ballots to be cast via a 15-inch touch-screen monitor, were used in elections in Georgia, California, Kansas and other locations, according to a company news release. On July 21, the company finalized an agreement with the state of Maryland to provide up to $55.6 million in touch-screen voting technology and related services.


But after analyzing tens of thousands of lines of programming code purportedly used to make this electronic voting system work, three researchers from the Information Security Institute at Johns Hopkins, aided by a computer scientist at Rice University in Houston, have expressed serious concerns about the voting system. The researchers said they uncovered vulnerabilities in the system that could be exploited by an individual or group intent on tampering with election results. In particular, they pointed to the use of a "smart card," containing a tiny computer chip, that each eligible voter receives. The card, inserted into the electronic voting machine, is designed to ensure that each person casts only one ballot. But the researchers believe a voter could hide a specially programmed counterfeit card in a pocket, withdraw it inside the booth and use it to cast multiple votes for a single candidate.

"A 15-year-old computer enthusiast could make these counterfeit cards in a garage and sell them," said Avi Rubin, technical director of the Information Security Institute at Johns Hopkins and one of the researchers involved in the study. "Then, even an ordinary voter, without knowing anything about computer code, could cast more than one vote for a candidate at a polling place that uses this electronic voting system."

The researchers were quick to note that no evidence exists that anyone has used such tactics to tamper with an election. However, they chose to make their findings public because of concerns that election fraud will almost certainly occur if weaknesses in the electronic voting system are not addressed before many more jurisdictions move to this method of picking public officials.

The security flaws were discovered this summer after Rubin assigned Adam Stubblefield, 22, and Yoshi Kohno, 25, two computer science doctoral students at the institute, to review the voting software code found on the Web. The students analyzed only those files that were publicly accessible and did not attempt to breach others that were protected by passwords. "Many of the attacks are very simple," Kohno said. "It is unfortunate to find such flaws in a system potentially as important as this one." Stubblefield added, "When people vote in the United States, they have to believe the election is fair."

The researchers, joined by Dan Wallach, an assistant professor of computer science at Rice University, were able to reconstruct the electronic voting terminal in a Johns Hopkins computer lab and detected the security problems. "Even without access to the protected files, we’ve determined this system is fundamentally flawed," Rubin said. "There will be no easy fix for this."

The issue is important, Rubin said, because problems related to Florida’s punch card ballots during the 2000 Presidential election have prompted many cities and states to consider computer screen voting systems as a better alternative. But Rubin, who has conducted extensive research into electronic voting and has been tapped to review the security of a federal electronic voting proposal, said the move to high-tech balloting should not be conducted in haste. "People are rushing too quickly to computerize our method of voting before we know how to do it securely," he said.

The researchers have detailed their findings in a technical paper

Although the researchers have not independently verified the current or past use of the code by Diebold or that the code they analyzed is actually Diebold code, they stated in their technical paper that "the copyright notices and code legacy information in the code itself are consistent with publicly available systems offered by Diebold and a company it acquired in 2001, Global Election Systems. Also, the code itself compiled and worked as an election system consistent with Diebold’s public descriptions of its system."

Contact Phil Sneiderman | Johns Hopkins University
Further information:
http://www.jhuisi.jhu.edu
http://www.avirubin.com

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>