Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three generations of optic Internet

24.09.2002


Professor Mikel Izal from the Public University of Navarre, Basque Country, has analysed the problems to integrate new optic networks in actual network and transfer level (TCP/IP) Internet protocols. This integration will enable to create the core of the second Internet generation in future, the so called Internet 2.



In that area, technological innovations are created everyday and the thesis has been focused on the burst switching networks corresponding to the second optic Internet generation.

Nowadays new optic technologies are based on wavelength division multiplexing. That way, several channels are transferred in a single optic fibre by using different wavelength carriers. Those optic technologies are divided into three generations. The first generation is based on wavelength division multiplexing (WDM). Here it is possible to create high capacity link networks between actual IP routers. The second one offers the possibility to make some operations of direct switching via optic technology. That way, the core of the network may offer optic channels, named Ligthpaths, or it can switch data in large packages, named burst switching networks.


Finally, the third generation would make all steps of channelling and processing of data-packages in the optic level, obtaining a complete optic switching of packages. At the present, the first generation is being implanted, as there are just experimental prototypes or architecture proposals for the second and third generations.

Problems with protocols

One of the theoretical advantage of optic Internet networks would be a faster data-transfer. However, if data is transferred in small packages, even if new networks have more transfer capacity and bandwidth, the network will be slow. In fact, the current problems of transfer time are based on protocols that were designed to have a secure network. Therefore, in order to make better use of speed capacity, data packages must be handled in larger packages.

In order to achieve that result, fractal traffic patterns or autosimilar patterns have been used. In new network architectures, the services of Internet protocols have been analysed, analytic expressions have been obtained and finally, simulations of such networks have been made to estimate the results.

Similarly, to offer the services Internet nowadays has the most effective protocols to be used in the second and third generations have been studied. In those studies the same result has been obtained: actual protocols would reduce significantly the speed in second and third generation networks. Therefore, it would be better to use protocols that have less interaction, but send larger data packages.

Finally, professor Izal has studied Internet traffic in a burst switching system. According to that research, it can be said that Internet and telephone traffic are not the same. The latter is stable in a certain scale, but Internet traffic is more difficult to predict. Therefore, the characteristics of burst traffic have been analysed and, as a consequence, the size and number of bursts have been grouped in a pattern. Indeed, that pattern could be useful for the design of optic switching of core of the network.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>