Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three generations of optic Internet

24.09.2002


Professor Mikel Izal from the Public University of Navarre, Basque Country, has analysed the problems to integrate new optic networks in actual network and transfer level (TCP/IP) Internet protocols. This integration will enable to create the core of the second Internet generation in future, the so called Internet 2.



In that area, technological innovations are created everyday and the thesis has been focused on the burst switching networks corresponding to the second optic Internet generation.

Nowadays new optic technologies are based on wavelength division multiplexing. That way, several channels are transferred in a single optic fibre by using different wavelength carriers. Those optic technologies are divided into three generations. The first generation is based on wavelength division multiplexing (WDM). Here it is possible to create high capacity link networks between actual IP routers. The second one offers the possibility to make some operations of direct switching via optic technology. That way, the core of the network may offer optic channels, named Ligthpaths, or it can switch data in large packages, named burst switching networks.


Finally, the third generation would make all steps of channelling and processing of data-packages in the optic level, obtaining a complete optic switching of packages. At the present, the first generation is being implanted, as there are just experimental prototypes or architecture proposals for the second and third generations.

Problems with protocols

One of the theoretical advantage of optic Internet networks would be a faster data-transfer. However, if data is transferred in small packages, even if new networks have more transfer capacity and bandwidth, the network will be slow. In fact, the current problems of transfer time are based on protocols that were designed to have a secure network. Therefore, in order to make better use of speed capacity, data packages must be handled in larger packages.

In order to achieve that result, fractal traffic patterns or autosimilar patterns have been used. In new network architectures, the services of Internet protocols have been analysed, analytic expressions have been obtained and finally, simulations of such networks have been made to estimate the results.

Similarly, to offer the services Internet nowadays has the most effective protocols to be used in the second and third generations have been studied. In those studies the same result has been obtained: actual protocols would reduce significantly the speed in second and third generation networks. Therefore, it would be better to use protocols that have less interaction, but send larger data packages.

Finally, professor Izal has studied Internet traffic in a burst switching system. According to that research, it can be said that Internet and telephone traffic are not the same. The latter is stable in a certain scale, but Internet traffic is more difficult to predict. Therefore, the characteristics of burst traffic have been analysed and, as a consequence, the size and number of bursts have been grouped in a pattern. Indeed, that pattern could be useful for the design of optic switching of core of the network.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>