Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A flexible approach to new displays

03.06.2008
Flat screen displays currently used in computer monitors, television sets and numerous other electronic devices are all built on a glass base. Most use liquid crystal devices (LCDs), which filter light from behind to form an image.

But the glass substrate makes LCD displays rigid and fragile, limiting their use. Now display manufacturers are working to develop a new generation of robust, flexible displays that can be curved to fit the shape of a product or even rolled up like a magazine. The question is, which of the technologies under development is the best?

“Research to define the route forward for flexible displays is too great a job for one particular company, institute or university,” says Dr Eliav Haskal of Philips Research who is coordinating the EU-funded FlexiDis project. “When we started the project nobody knew exactly what to do, there were many different solutions.”

Big industrial names such as Nokia, Thales and Philips, as well as universities, research centres and many small and medium-sized businesses have pooled their skills and expertise to thoroughly test a large number of materials and techniques.

Alternatives to glass

Displays have two principal assemblies: a ‘backplane’ with the electronics that drive the display, and a ‘frontplane’ containing the actual display elements.

Backplanes are conventionally made of glass on which is deposited the grid of thin-film transistors (TFTs), which control the state of each pixel in the display. To create a flexible display the FlexiDis researchers needed to find an alternative to glass.

One possibility was thin metal, which is particularly attractive for a promising new kind of light-emitting element called an OLED (organic light-emitting diode). Unlike an LCD an OLED emits its own light rather than filtering light from a background source and so has the potential to create full-colour displays using much less power than LCDs.

OLEDs can also switch on and off much faster than an LCD making them suitable for video displays such as TV sets.

“The initial guess was to work with metal substrates because metal is a very good barrier to water and oxygen both of which are known to degrade the lifetime of OLEDs,” says Dr Haskal.

Metal also has the advantage of being stiff enough to be handled in factories designed to manufacture displays based on glass, a very important economic consideration.

It turned out that constructing a metal-based backplane suitable for OLEDs was very difficult, so the partners also decided to investigate the possibility of constructing OLED displays on a plastic backplane.

“We had to introduce a method of making thin-film transistors on plastic in a process which can be run in a production facility,” says Dr Haskal. “Ultimately that was the biggest problem.”

Conventional transistors are typically made at temperatures around 280°C, which is too hot for most plastics. Rather than try to reduce the temperature of a standard process, the researchers decided to develop two alternatives.

One method used a heat resistant plastic called polyimide at 280°C. The other alternative was to use organic TFTs, which can be deposited at much lower temperatures.

Electronics on plastic

The FlexiDis partners have now developed three new technologies for producing flexible plastic backplanes. The first, called EPLaR (electronics on plastic by laser release), uses polyimide spin-coated on to a glass plate. The TFTs are formed on the plastic in the usual way and the whole backplane assembly is then released from the glass by a laser process.

The other two technologies use organic TFTs deposited at 120-150°C, a temperature at which many more plastics can be used. In one process the TFTs are built up by ink-jet and in the other a spin-coating process is used.

These three technologies have found their first commercial applications with a monochromatic display that can show high-resolution images.

So-called ‘electrophoretic’ displays are the basis of what has been called ‘e-paper’, which reflects light just like normal paper and can hold an image without consuming any power. The glass-based version of this technology has been commercialised in the Sony Librié, the Amazon Kindle and the IRex Iliad.

Two European companies are launching e-readers based on the FlexiDis technologies. A factory in Taiwan has been licensed to mass produce flexible displays for the consumer market. Thales Avionics LCD are planning to industrialise flexible displays for the avionics sector.

Although the OLED technology is further from the market – FlexiDis partners demonstrated the first flexible OLED display in 2007 – it offers the best prospects for creating flexible displays that can support full colour and video.

In the longer term, the development of full colour displays could make possible the kind of moving newspaper pictures seen in movies such as the Harry Potter series and Minority Report.

“Everyone in this industry has watched Minority Report because of the ideas about working with newspapers which show constantly updating information in full colour and full video,” says Dr Haskal.

FlexiDis received funding from the EU's Sixth Framework Programme for research.
This feature is part 1 of a two-part series on the FlexiDis project.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89773

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>