Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUNY researcher issued patent for virtual telemicroscope

31.03.2008
Telemicroscope system capable of E-mailing electronic slides

After nearly ten years of research and development, scientists at SUNY Downstate Medical Center in Brooklyn and Peking University in Beijing were awarded a United States patent for their virtual telemicroscope. This patented software permits off-site pathologists to diagnose cancer or other diseases in patients living in remote locations around the world.

Virginia M. Anderson, MD, associate professor of pathology at SUNY Downstate, and Jiang Gu, MD, PhD, dean and chairman of pathology at Peking University, developed the virtual microscope system, the only one of its kind capable of emailing electronic slides. Using their patent, the Chinese company Motic – a global leader in microscope manufacturing -- created a microscope with a robotic stage that scans whole slides at various magnifications and then creates compressed images that can be emailed all over the world.

In China, where the device is being tested as a diagnosis instrument, 600 hospitals do not have an on-site pathologist. The system was developed with that fact in mind.

“Enormous voids in pathology services exist. Virtual slides are definitely going to improve diagnostic accuracy and healthcare,” says Dr. Anderson.

The Motic telepathology system utilizes a computer and microscope, which enables interactive communication on a user network. A robot scans the whole tissue sample on the microscope. Subsequent images corresponding to the selected area of the specimen are linked at higher magnifications. The patented software turns an ordinary computer into a virtual microscope. High magnification images are compressed and linked to the low power scanned glass slide that is stored as a virtual slide file. Images can then be emailed and analyzed by pathologists at remote locations. Once received, Internet independent images can be stored and viewed as part of the electronic medical record or medical student teaching file.

“The virtual telemicroscope is designed the way pathologists think and work,” Dr. Anderson says, adding, “A pathologist would never scan an entire histopathologic section at high power. This is inefficient and unnecessary. Slides prepared by an experienced pathologist will focus on important areas to make a diagnosis.”

Clinical trials showed that Motic’s virtual telemicroscope is “as good as or better than the competition.” The system is also teaching-friendly, allowing professors to manipulate existing digital slides and create new slides for students to study.

The next generations of medical students and pathologists are being taught through interactive technology. The virtual telemicroscope will save time and money, improve medical education, and provide insight into the pathogenesis of disease. Microscopes will be used to prepare whole slide images for analysis on a big screen or laptop computer.

The SUNY Downstate system produces the only virtual slides that can be emailed around the world. Moreover, it is also the least expensive, Internet independent solution for expert consultation. Clinical trials published in the journal, Human Pathology (February 2008), confirm the diagnostic accuracy of virtual slides as compared to traditional methods.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>