Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SINTEF goes underground in Las Vegas and Florida

25.01.2008
SINTEF scientists are currently helping two major US cities to manage “buried treasure” worth billions of dollars. They have helped to develop planning tools that are used to manage and rehabilitate water supply grids – on both sides of the Atlantic.

The export product is an ingenious planning tool for renewal of the water supply network: simulation software that makes sure that the right pipelines are replaced at the right time; i.e. before they start to leak.

This is a tool that the SINTEF scientists can see a need for all over the world, and which they have already used in a number of Norwegian cities.

Saving both money and water

The “product” is an analytical tool called “Computer-Aided REhabilitation of Water networks (CARE-W), a software package that SINTEF Building Research and NTNU have helped to develop under the auspices of the EU.

The software assesses the condition and performance of the water supply grid in a new, systematic way, giving water engineers a tool that they have lacked until now, according to SINTEF's Leif Sigurd Hafskjold, who is leading the projects in the US.

“The system provides a basis for making decisions that ensure that water pipes are not renewed too late, but not too early either. This can save local authorities and other supply grid owners large amounts of unnecessary spending as well as saving water, which is a scarce resource in many parts of the world”, explains Hafskjold.

At the moment, the software exists only as a prototype version. According to Hafskjold, the contracts with Las Vegas and Tampa will function as full-scale trials.

Reactions usually too late

The CARE-W project is based on observations made by Norwegian and other scientists in their own countries, and which are described in the following terms by SINTEF's Leif Sigurd Hafskjold: “The usual situation is that owners of water supply grids react only when reports of faults begin to come in. But by that time, the leaks may well have been been frequent and serious enough to have caused damage and financial loss. And it is not unusual for a decision to dig up a pipeline to be made immediately after another department has been excavating in the same area and has just filled in its trenches.

The SINTEF scientists' optimism regarding the market potential for CARE-W is due to the fact that the “patch up the damage” philosophy is currently meeting a counter-current of opinion in many parts of the world: a growing interest in managing collective investments correctly, including the values laid down in the water and sewage network. It is not so strange that such a wave of interest has arrived; this sector is not handling small change.

“If Norway were to replace the whole of its local water and sewage networks all at once, it would cost NOK 400 billion, which is half of the national budget,” says Hafskjold.

Help to “see” beneath the surface

CARE-W is tailor-made for this wave of awareness. The software helps local authorities that wish to improve their water supply management and rehabilitation programmes. According to Hafskjold, analyses are alpha and omega for the people who watch over our subterranean infrastructure.

“People who assess the maintenance requirements of buildings can measure humidity and count cracks. But this is a much more expensive process where buried water and sewage pipelines are concerned.

Good management in the water supply and sewage sector is now in sharp focus on both sides of the Atlantic. In Norway, SINTEF Building Research has used the CARE-W software package to help around 20 local authorities to estimate their maintenance requirements.

Interest in asset management is also rapidly growing in the USA. This has led to SINTEF Building Research being invited to join projects with its CARE-W software in two cities of a million inhabitants over there.

The first order from the USA came to SINTEF Building Research just over a year ago from the desert gambling city of Las Vegas, a rapidly growing city with limited access to water, where there is a particularly strong desire to avoid leaky water pipes. As sub-contractors to New York's Polytechnic University, Hafskjold and his colleagues have been helping the Las Vegas Valley Water District to adopt the CARE-W package. The original contract has already been extended.

The second order recently came in from Hillsborough County, which surrounds Tampa, one of the largest cities in the State of Florida. This is a one-year project worth a million kroner. The project involves the SINTEF scientists using the CARE-W package on its own, as sub-contractors to the UK Halcrow Group consulting company. Now they have also been contacted by Tampa, which wishes to know more about the capabilities of the software.

Aase Dragland | alfa
Further information:
http://www.sintef.no/care-w

More articles from Information Technology:

nachricht Intelligent Deletion of Superfluous Digital Files
21.02.2020 | Otto-Friedrich-Universität Bamberg

nachricht High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"
19.02.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>