Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software wrapper for smarter, networked homes

21.12.2007
Homes today are filled with increasing numbers of high-tech gadgets, from smart phones and PCs to state-of-the-art TV and audio systems, many of them with built-in networking capabilities. Combined, these devices could form the building blocks of the smart homes of the future, but only if they can be made to work together intelligently. European researchers are addressing the challenge.

Although the idea of creating intelligent networked home environments as a way to make life easier, safer and more enjoyable has been around for some time, the technology has yet to catch up with the vision. Home automation systems have become more commonplace and consumer electronics have more networking capability, but no one has, so far, gotten all the high-tech and not so high-tech gadgetry cluttering modern homes to work together in an intelligent way. It is not yet common for fridges to talk to your TV to warn that the door has been left open or for heating systems to turn on when you return home, for example.

“People are finding themselves with all these networkable devices and are wondering where the applications are that can use these devices to make life easier and how they could be of more value together than individually,” says Maddy Janse, a researcher for Dutch consumer electronics group Philips.

There are two fundamental obstacles to realising the vision of the intelligent networked home: lack of interoperability between individual devices and the need for context-aware artificial intelligence to manage them. And, to make smart homes a reality, the two issues must be addressed together.

Software wrapper to get gadgets talking

The EU-funded Amigo project, coordinated by Janse, is doing just that, creating a middleware software platform that will get all networkable devices in the home talking to each other and providing an artificial intelligence layer to control them.

“With the Amigo system, you can take any networkable device, create a software wrapper for it and dynamically integrate it into the networked home environment,” Janse explains.

The project, which involves several big industrial and research partners, is unique in that it is addressing the issues of interoperability and intelligence together and, most significantly, its software is modular and open source.

By steering away from creating a monolithic system and making the software accessible to all, the partners believe they can overcome the complications that have held back other smart home projects. For consumer electronics companies and telecoms firms, the system has the additional benefit of providing a test bed for new products and services.

“What we are trying to do is so large and so complex that it has to be broken down into smaller parts. By making it open source and letting third-party developers create applications we can ensure the system addresses whatever challenges arise,” Janse says.

The Amigo architecture consists of a base middleware layer, an intelligent user services layer, and a programming and deployment framework that developers can use to create individual applications and services. These individual software modules form the building blocks of the networked home environment, which has the flexibility to grow as and when new devices and applications are added.

Interoperability is ensured through support for and abstraction of common interaction and home automation standards and protocols, such as UPnP and DNLA as well as web services, while the definition of appropriate ontologies enables common understanding at a semantic level.

“A lot of applications are already available today and more will be created as more developers start to use the software,” Janse says.

A vision of the future

A video created by the project partners underscores their vision for the future in which homes adapt to the behaviour of occupants, automatically setting ambient lighting for watching a movie, locking the doors when someone leaves or contacting relatives or emergency services if someone is ill or has an accident. In an extended home environment, the homes of friends and relatives are interconnected, allowing information and experiences to be shared more easily and setting the stage for the use of tele-presence applications to communicate and interact socially.

Initially, Janse sees such networked systems being employed in larger scale environments than an individual home or for specific purposes. Some subsets of applications could be rolled out in hotels or hospitals or used to monitor the wellbeing of the elderly or infirm, for example.

“With the exception of people with a lot of money building their homes from scratch, it will be a while before intelligent networked homes become commonplace,” the coordinator notes. “In addition, this isn’t something average consumers can easily set up themselves, currently some degree of programming knowledge is needed and installers need to become familiar with the concepts and their potential.”

Even so, the project is hoping to continue to stimulate the growth of the sector.

In October, it launched the Amigo Challenge, a competition in which third-party programmers have been invited to come up with new applications using the Amigo software. Janse expects the initiative will lead to the software being used in even more innovative and possibly unexpected ways.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89362

More articles from Information Technology:

nachricht Tiny optical cavity could make quantum networks possible
31.03.2020 | California Institute of Technology

nachricht Chip-based devices improve practicality of quantum-secured communication
23.03.2020 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>