Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollen measurement system developed at TU Graz analyses pollen fast, cheaply and automatically

02.04.2020

Researchers at Graz University of Technology have successfully tested a cost-effective and fully automated pollen sensor prototype and are now making their knowledge freely available and usable for everyone.

Pollen: essential for the pollination of many plants, but the bane of allergy sufferers. Pollen warning services provide information about daily exposure and allergy risk and are an important source of information for affected persons.


Nam Cao is responsible for the hardware of the pollen sensor prototype. The PhD student is working on this topic as part of his DIssertation at the Institute of Technical Informatics at TU Graz.

© TU Graz – ITI


Olga Saukh is Assistant Professor for Embedded Systems at TU Graz and works on algorithm engineering at the Institute of Technical Informatics.

© Lunghammer - TU Graz

For common data collection, pollen traps are used which continuously measure the pollen content in the air. To do this, they use a built-in electric motor to suck the ambient air into a drum where the pollen in the air sticks to an adhesive strip. Professionally trained persons then evaluate the pollen microscopically and grade it.

However, the procedure is costly and time-consuming. Automated solutions are currently too expensive and only suitable for a limited number of pollen species. Olga Saukh and Nam Cao, two researchers from the Institute of Technical Informatics, have now joined forces with a team from ETH Zurich to develop a prototype of a pollen measurement sensor that could dramatically simplify the entire process – from catching the pollen to recording and evaluating it.

Simple, inexpensive, lightweight

The pollen measurement system consists of two parts: a measuring device, which includes a pollen trap, a particle concentrator and a digital transmitted light microscope, and a cloud service, in which the microscopically recorded pollen images are analysed.

The prototype is particularly light (8 kg), compact (30 cm x 40 cm x 44 cm), energy-saving (the power consumption is 6W) and can be implemented at low cost. "The material costs amount to around 1000 euros," says Olga Saukh. In comparison: currently available fully automated pollen measuring devices cost up to 100,000 euros.

The pollen trap has six inlets that can collect pollen from all directions of flight. “We’ve been inspired by modern vacuum cleaner technologies and use a cyclone to collect the pollen samples, as is used for bagless vacuum cleaners that collect the sucked up dirt in a collection container," explains Nam Cao.

How the pollen measurement sensor works

The pollen lands inside the device on a clockwise rotating glass plate which is covered with a thin layer of glycerine. The glycerine fulfils two essential tasks. On the one hand, it ensures that the pollen grains stick to the glass surface. On the other, it improves the quality of the images that the microscope sends to the cloud.

"Glycerine is transparent, does not evaporate and is also suitable for outdoor use due to its thermal stability," says Olga Saukh, explaining the choice. Using a standard paper cutting blade, the glycerine-soaked pollen are concentrated to a thin line. The narrower this line is, the more pollen can be recorded under a microscope and then analysed. The pollen is then automatically wiped off the plate such that the system can work autonomously for a long period of time.

Machine learning algorithms analyse the pollen

Up to 100 microscopic images are uploaded to the cloud in 30 seconds. An object recognition software identifies and classifies the pollen grains on the basis of various characteristics. In field trials, the pollen recognition model correctly recognized pollen in 90 percent of cases.

In order to be able to train and further improve the model using machine learning algorithms, the researchers manually annotated a subset of the recorded data. Now the researchers are working on further advancing the evaluation of the pollen. "This is an ongoing process, where we depend on the support of pollen experts," says Olga Saukh, referring to two open source platforms. The dataset is publicly available on the Zenodo platform. The hardware design and the image processing code are provided on the online service GitHub.

This research topic is anchored in the Field of Expertise Information, Communication & Computing, one of the five scientific research foci at TU Graz.

Wissenschaftliche Ansprechpartner:

Olga SAUKH
bak. Ass.Prof. Dr.rer.nat. MSc
TU Graz | Institute of Technical Informatics
Phone: +43 316 873 6413
saukh@tugraz.at

Originalpublikation:

Automated Pollen Detection with an Affordable Technology: http://www.olgasaukh.com/paper/cao20automated.pdf

Weitere Informationen:

https://www.tugraz.at/en/institutes/iti/home/ (Institute of Technical Informatics)
https://www.tugraz.at/en/tu-graz/services/news-stories/planet-research/singlevie... (Portrait of Olga Saukh)
http://www.olgasaukh.com/ (Olga Saukh's Personal Website)
https://zenodo.org/record/3572653#.Xlg8dC2ZNp8 (dataset)
https://github.com/osaukh/pollenpub (hardware design and image processing code)

Mag. Christoph Pelzl, MSc | Technische Universität Graz

More articles from Information Technology:

nachricht Project AUTOASSERT: DFKI scientists develop software tool for the support of German electronics companies
07.07.2020 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Genetic code for stem cell heart repair detected
06.07.2020 | Universität Rostock

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>