Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patented concept from Halle: novel, high-performance diodes and transistors

08.10.2019

Today's computer processors are increasingly pushed to their limits due to their physical properties. Novel materials could be the solution. Physicists from Martin Luther University Halle-Wittenberg (MLU) have investigated if and how these materials might be developed. They have created, tested and filed a patent for a concept that utilises the latest findings from the field of spintronics. The team reported on their research in the journal "ACS Applied Electronic Materials".

With their new concept, the researchers at MLU want to improve the properties of diodes and transistors. Common processors use thousands of diodes and transistors to process data. "The energy efficiency of these individual components determines how much energy is consumed by the processor overall," says Professor Ingrid Mertig, a theoretical physicist at MLU.


Energy loss, which occurs when electrical energy is converted into heat, remains the biggest challenge, she explains. When developing these components, scientists also have to decide whether to create very powerful and energy-efficient components that can only be used for a specific purpose, or to create parts that can be used in a variety of ways, but which have a lower performance and require more energy.

For its latest innovation, the team of researchers investigated whether spintronics can be used to solve these problems. It is based on a special property of electrons: the spin. This is a kind of intrinsic angular momentum of electrons that generates a magnetic moment which is the origin of magnetism.

The researchers have investigated if and how a diode or transistor can be developed that uses this spin in addition to the charge of the electron. The concept is based on newly discovered magnetic materials that contain spin information in a particular way. These could replace traditional semiconductor materials in the novel components.

"Our proposals for the new transistors combine data processing and storage. There is no loss of energy and they can easily be reconfigured," explains Dr Ersoy Sasioglu, a physicist at MLU and first author of the paper.

A patent has already been filed for the design of these spintronic components. The research group from Halle focusses on using theoretical simulations in designing novel materials. In cooperation with experimental physicists from the University of Bielefeld, the scientists now want to test which materials are best suited for the new components.

The research work was financed by the European Regional Development Fund (ERDF) and the State of Saxony-Anhalt.

Originalpublikation:

Sasioglu E., Blügel S, Mertig I. Proposal for Reconfigurable Magnetic Tunnel Diode and Transistor. ACS Applied Electronic Materials (2019). doi: 10.1021/acsaelm.9b00318

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

More articles from Information Technology:

nachricht Integrate Micro Chips for electronic Skin
23.01.2020 | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

nachricht Foundations Laid for Building-Scale GPS Technology
20.01.2020 | Technische Universität Chemnitz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Residues in fingerprints hold clues to their age

23.01.2020 | Life Sciences

Here, there and everywhere: Large and giant viruses abound globally

23.01.2020 | Life Sciences

Preventing metastasis by stopping cancer cells from making fat

23.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>