Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019

Professor Andreas Schütze and his team of experts in measurement and sensor technology at Saarland University are making available a free data processing tool that represents the very essence of a large number of their research projects. The software package – called simply ‘Dave’ – is a MATLAB toolbox that allows rapid evaluation of signals, pattern recognition and data visualization when processing huge datasets. The free software enables very large volumes of data, such as those produced by modern sensor systems, to be processed, analysed and visually displayed very rapidly, so that researchers can optimize their measurement systems interactively.

Members of the research team will be at Hannover Messe from the 1st to the 5th of April (Hall 2, Stand B46) where they will be explaining their open source software.


Open source software ‘Dave’: Data visualization (shown in background) helps Prof. Andreas Schütze (right) and research assistant Julian Joppich (left) interactively optimize measurement systems.

Credit: Oliver Dietze


Prof. Dr. Andreas Schütze

Credit: Oliver Dietze

The source code of the MATLAB toolbox ‘Dave - Data Analysis and Verification/Visualization/Validation Environment’ has been published at http://www.lmt.uni-saarland.de/dave

When engineers in research departments or research institutes conduct experiments with sensor systems they collect huge quantities of data and have countless signals to analyse – as a result, things tend to get very complicated very quickly. Juggling all of the numbers that come flooding in from the sensors can be extremely challenging.

One of the key tasks when configuring a sensor system is to optimize the numerous parameters and variables so that the results provide meaningful information. Which settings are actually the optimal ones is something that the researchers typically have to determine heuristically – and that can take time.

If the chosen relationships turn out to be unsuitable, the whole number puzzle simply collapses. Suddenly, those long series of measurements and all the subsequent effort were in vain.

New software that has been developed in Saarbrücken and has been made freely available is helping researchers and companies navigate through the data jungle. Instead of relying on a conventional and time-consuming trial and error approach, the new software effectively asks the question ‘What happens when...’.

‘Whenever we use our gas sensors to measure air pollutants, we are faced with the same old problem of analysing vast volumes of data and of recognizing signal patterns. If we want to continue to make our sensors more sensitive and more selective, we need to know whether very fine modifications to the sensors themselves and to the analysis actually bring about the desired improvements in sensitivity and selectivity.

But there are countless ways in which sensors can be modified. We want to be able to identify the best paths as a rapidly as possible, or, equally, to quickly detect and reject the unproductive paths,’ explains Professor Andreas Schütze. ‘Over a period of many years and over numerous research projects, we have been developing software that helps us achieve this goal.

The software makes use of machine learning methodologies and enables us to identify patterns rapidly, to evaluate data cleanly and to visualize our results,’ says Schütze.

The researchers are now publishing their software tool under a copyleft licence. (Under copyleft rules, any adaptations of the original work, such as changes or enhancements are also bound by the same licence that covers the original work.) ‘Anyone may use the open source software, provided that when results are published, the authors make reference to Dave,’ says Schütze.

Any amount of sensor data can be processed with the Saarbrücken software tool. The software helps to rapidly locate the best paths to take. ‘Dave is the opposite of a black box. The software makes the calculations completely transparent. It shows the user that when they alter a particular parameter, it has a specific identifiable consequence.

The visualization modules in Dave also make it easier to optimize a measurement system. The user can run through, test out and visualize different variants, and that helps the user find the most promising variants quickly and efficiently,’ explains Manuel Bastuck, a research assistant in the Measurement Technology Lab and the developer of the Dave software.

‘Using Dave as a tool, we were able to rapidly achieve some widely acclaimed results in the field of condition monitoring in “Industry 4.0” applications. The results not only helped to solve the measurement problem itself, but also to configure the measuring system more simply and more cost-effectively,’ says Andreas Schütze.

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used free of charge.

This press release is available in German at:
https://www.uni-saarland.de/nc/universitaet/aktuell/artikel/nr/20638.html

Contact:
Prof. Dr. Andreas Schütze, Tel.: +49 (0)681 302-4663, Email: schuetze@lmt.uni-saarland.de
Measurement Technology Lab, Saarland University, Saarbrücken, Germany and
Center for Mechatronics and Automation Technology (ZeMA)
www.lmt.uni-saarland.de

The Saarland Research and Innovation Stand at Hannover Messe is organized by Saarland University’s Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University. https://www.kwt-uni-saarland.de/

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Schütze, Tel.: +49 (0)681 302-4663, Email: schuetze@lmt.uni-saarland.de

Weitere Informationen:

http://www.lmt.uni-saarland.de/dave

Claudia Ehrlich | Universität des Saarlandes

More articles from Information Technology:

nachricht Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development
16.09.2019 | Universität Innsbruck

nachricht Artificial Intelligence speeds up photodynamics simulations
12.09.2019 | University of Vienna

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>