Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Step Ahead: Adaptive Radar Systems for Smart Driver Assistance

20.09.2018

Constantly changing environments represent an enormous challenge for modern driver assistance systems. To meet these, software-controlled automotive radars offer entirely new opportunities: They are compact, low-cost, and also versatile and highly reconfigurable. By applying cognitive methods, they can be used to develop radars that intelligently and automatically adapt their parameters to the individual situations during operation. Fraunhofer FHR will present such an adaptive radar at the European Microwave Week at booth 33 in Madrid from 25 – 27.09.2018. The demonstrator accurately measures changing distances and positions quickly and intelligently while optimizing the use of resources.

Driver assistance systems have to ensure reliable operation in the whole range of different traffic conditions: In city traffic, for instance, they have to detect a large number of different targets in the presence of a very heterogeneous background.


Cognitive radar intelligently and automatically adapts its parameters to the individual radar scene.

Fraunhofer FHR


Architecture of a cognitive vehicle radar that uses the feedback from previous measurements and external sources to achieve an adaptive, optimized detection of the scene.

Fraunhofer FHR

On the highway, on the other hand, they have to recognize targets at high speeds and in large distances. Automotive radars have to be able to adapt to these changing conditions in order to accurately determine short and long distances, relative speeds, and target positions in each situation while recognizing several types of targets in diverse environments.

To achieve this, cognitive radars intelligently adapt their operational parameters such as the channel selection, the bandwidth, and the carrier frequency as well as the duration and the number of measurements to the different situations and tasks. One major challenge associated with the spatial resolution is the channel selection for the position estimation.

Here, the accuracy depends on the length of the antenna array. Accuracy increases with the number of antenna elements, i.e. with the length of the array. This, however, requires more transmit and receive channels with an adequate spacing, which leads to higher costs and a large volume of data that has to be processed in real time.

Fraunhofer FHR has developed a MIMO radar that adaptively detects the radar scene and uses complex algorithms to accurately predict the radar target’s new position based on previous measurements. With these one step ahead predictions, the controller in the system adaptively selects only the 4 to 6 receiver and transmitter channels necessary for the next measurement from the MIMO array’s 32 virtual channels.

Thus, the position can be accurately determined, even with a relatively small and cheaper system and a lower real time data volume. The results of each new measurement flow into the calculations for the next measurement according to the closed loop principle. This is how the radar system learns to continuously improve its adaptive strategy depending on the individual situations and to create an optimized image of the radar scene using less hardware and computational resources.

At the European Microwave Week EUMW, the scientists will present their cognitive radar demonstrator together with other radar innovations such as 3D printed lenses and new antenna developments at booth 33. In addition, in the Automotive Radar Area, they will exhibit their radar target simulator ATRIUM for the qualification of automotive radars. The EUMW will take place in Madrid from September 25 – 27, 2018.

As one of Europe’s leading institutes, the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR conducts extensive research in the area of high frequency and radar technology. Its core research focuses on sensors for precise distance regulation and positioning as well as imaging systems. The applications range from systems for reconnaissance, surveillance, and protection to real-time capable sensors for traffic and navigation as well as quality assurance and non-destructive testing.

Weitere Informationen:

https://www.fhr.fraunhofer.de/en/press-media/press-releases/2018/eumw2018_en.htm... Press Release and pictures in printable quality.

Christiane Weber | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

More articles from Information Technology:

nachricht 5G is smartening up production
23.08.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Software for diagnostics and fail-safe operation of robots developed at FEFU
23.08.2019 | Far Eastern Federal University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>