Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New AI computer vision system mimics how humans visualize and identify objects

21.12.2018

Researchers from UCLA Samueli School of Engineering and Stanford have demonstrated a computer system that can discover and identify the real-world objects it "sees" based on the same method of visual learning that humans use.

The system is an advance in a type of technology called "computer vision," which enables computers to read and identify visual images.


A 'computer vision' system developed at UCLA can identify objects based on only partial glimpses, like by using these photo snippets of a motorcycle.

Credit: UCLA Samueli

It is an important step toward general artificial intelligence systems--computers that learn on their own, are intuitive, make decisions based on reasoning and interact with humans in a more human-like way.

Although current AI computer vision systems are increasingly powerful and capable, they are task-specific, meaning their ability to identify what they see is limited by how much they have been trained and programmed by humans.

Even today's best computer vision systems cannot create a full picture of an object after seeing only certain parts of it--and the systems can be fooled by viewing the object in an unfamiliar setting.

Engineers are aiming to make computer systems with those abilities--just like humans can understand that they are looking at a dog, even if the animal is hiding behind a chair and only the paws and tail are visible.

Humans, of course, can also easily intuit where the dog's head and the rest of its body are, but that ability still eludes most artificial intelligence systems.

Current computer vision systems are not designed to learn on their own. They must be trained on exactly what to learn, usually by reviewing thousands of images in which the objects they are trying to identify are labeled for them.

Computers, of course, also cannot explain their rationale for determining what the object in a photo represents: AI-based systems do not build an internal picture or a common-sense model of learned objects the way humans do.

The engineers' new method, described in the Proceedings of the National Academy of Sciences, shows a way around these shortcomings.

The approach is made up of three broad steps. First, the system breaks up an image into small chunks, which the researchers call "viewlets." Second, the computer learns how these viewlets fit together to form the object in question.

And finally, it looks at what other objects are in the surrounding area, and whether or not information about those objects is relevant to describing and identifying the primary object.

To help the new system "learn" more like humans, the engineers decided to immerse it in an internet replica of the environment humans live in.

"Fortunately, the internet provides two things that help a brain-inspired computer vision system learn the same way humans do," said Vwani Roychowdhury, a UCLA professor of electrical and computer engineering and the study's principal investigator.

"One is a wealth of images and videos that depict the same types of objects. The second is that these objects are shown from many perspectives--obscured, bird's eye, up-close--and they are placed in different kinds of environments."

To develop the framework, the researchers drew insights from cognitive psychology and neuroscience.

"Starting as infants, we learn what something is because we see many examples of it, in many contexts," Roychowdhury said. "That contextual learning is a key feature of our brains, and it helps us build robust models of objects that are part of an integrated worldview where everything is functionally connected."

The researchers tested the system with about 9,000 images, each showing people and other objects. The platform was able to build a detailed model of the human body without external guidance and without the images being labeled.

The engineers ran similar tests using images of motorcycles, cars and airplanes. In all cases, their system performed better or at least as well as traditional computer vision systems that have been developed with many years of training.

###

The study's co-senior author is Thomas Kailath, a professor emeritus of electrical engineering at Stanford who was Roychowdhury's doctoral advisor in the 1980s. Other authors are former UCLA doctoral students Lichao Chen (now a research engineer at Google) and Sudhir Singh (who founded a company that builds robotic teaching companions for children).

Singh, Roychowdhury and Kailath previously worked together to develop one of the first automated visual search engines for fashion, the now-shuttered StileEye, which gave rise to some of the basic ideas behind the new research.

Amy Akmal | EurekAlert!
Further information:
https://samueli.ucla.edu/new-ai-system-mimics-how-humans-visualize-and-identify-objects/

More articles from Information Technology:

nachricht Researchers build transistor-like gate for quantum information processing -- with qudits
17.07.2019 | Purdue University

nachricht New DFG Research Group "Metrology for THz Communications"
17.07.2019 | Technische Universität Braunschweig

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>