Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making light work of quantum computing

22.08.2018

Light may be the missing ingredient in making usable quantum silicon computer chips, according to an international study featuring a University of Queensland researcher.

The team has engineered a silicon chip that can guide single particles of light - photons - along optical tracks, encoding and processing quantum-bits of information known as 'qubits'.


Tracks called waveguides guide photons in silicon. Spirals of these waveguides are used to generate photons that are routed around the processor circuit.

Credit: Xiaogang Qiang, University of Bristol.

Professor Timothy Ralph from UQ's Centre for Quantum Computation and Communication Technology said that the use of photons in this way could increase the number and types of tasks that computers can help us with.

"Current computers use a binary code - comprising ones and zeroes - to transfer information, but quantum computers have potential for greater power by harnessing the power of qubits," Professor Ralph said.

"Qubits can be one and zero at the same time, or can link in much more complicated ways - a process known as quantum entanglement - allowing us to process enormous amounts of data at once.

"The real trick is creating a quantum computing device that is reprogrammable and can be made at low cost."

The experiment, conducted primarily at the University of Bristol, proved that it is possible to fully control two qubits of information within a single integrated silicon chip.

"What this means is that we've effectively created a programmable machine that can accomplish a variety of tasks.

"And since it's a very small processor and can be built out of silicon, it might be able to be scaled in a cost-effective way," he said.

"It's still early days, but we've aimed to develop technology that is truly scalable, and since there's been so much research and investment in silicon chips, this innovation might be found in the laptops and smartphones of the future."

A surprising result of the experiment is that the quantum computing machine has become a research tool in its own right.

"The device has now been used to implement several different quantum information experiments using almost 100,000 different reprogrammed settings," Professor Ralph said.

"This is just the beginning; we're just starting to see what kind of exponential change this might lead to."

Media Contact

Professor Timothy Ralph
ralph@physics.uq.edu.au
61-400-386-297

 @uq_news

http://www.uq.edu.au 

Professor Timothy Ralph | EurekAlert!
Further information:
https://www.uq.edu.au/news/article/2018/08/making-light-work-of-quantum-computing
http://dx.doi.org/10.1038/s41566-018-0236-y

More articles from Information Technology:

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

nachricht EU project CALADAN set to reduce manufacturing cost of Terabit/s capable optical transceivers
11.03.2019 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>