Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ideal size for computer memory

04.12.2017

Ultraprecise simulation of a computer storage technology known as CBRAM reveals its optimal geometry: an insulator roughly ten atoms thick sandwiched between two electrodes.

CBRAM (conductive bridging random access memory) could play a fundamental role in memory in the future by storing data in a non-volatile (i.e., near-permanent) way. To reduce the size and power consumption of such components, it is essential to precisely understand their behaviour at the atomic level.


Atomic-scale computer simulation of a CBRAM cell subjected to 1mV voltage: electron trajectories (blue and red lines); copper atoms (grey); silicon and oxygen atoms (orange).

© Mathieu Luisier / ETH Zurich

Mathieu Luisier, associate professor at ETH Zurich, and his team studied this type of memory, which consists of two metal electrodes separated by an insulator. The researchers developed a computer model of a CBRAM that consists of some 4500 atoms and obeys the laws of quantum mechanics governing the microscopic world. This atomic-scale simulation makes it possible to precisely describe the intensity of the current generated by a metallic nanofilament as it forms and dissolves between the electrodes.

Ten atoms thick

"This is a huge step forward", says Mathieu Luisier, who was an SNSF professor at ETH Zurich from 2011 to 2016. "Up to now, existing models could handle only about a hundred atoms." The new model accurately reproduces the electric current as well as the energy dissipated by the cell, in turn enabling calculation of its temperature.

The researchers are able to observe the effect of changes in the thickness of the insulator and the diameter of the metallic filament. The findings, which were presented at the IEDM conference in San Francisco in December 2017, show that local power consumption and heat are reduced if the two electrodes are moved closer together.(*) But only up to a certain point: electrodes that are too close are subject to the quantum tunneling effect, and the current between them is no longer controllable.

The research shows that in an optimal CBRAM geometry, the insulator is 1.5 to 2 nanometers (about 10 atoms) thick. Fabrication is still a challenge, however: machines capable of achieving such dimensions use a thermal probe lithography technique that is currently ill suited to mass production. "Today, a typical CMOS-type transistor channel measures about 20 nanometres, or ten times thicker than the CBRAM insulators we investigated", says Luisier. Consequently, Moore's law – which predicts that the size of electronic components will halve every 18–24 months – could run up against a wall within a decade.

To achieve their 4500-atom model, the researchers benefited from access to the world's third-most-powerful computer – Piz Daint – which is located at the Swiss National Supercomputing Centre (CSCS) in Lugano and can perform up to 20 million billion operations per second. This type of study requires 230 state-of-the-art graphics cards; Piz Daint has more than 4000 of them. Each card has its own CPU. "Even with this computational power, it takes ten hours or so to simulate one memory and to determine its electrical characteristics", says Luisier.

(*) F. Ducry et al.: Ab-initio Modeling of CBRAM Cells: from Ballistic Transport Properties to Electro-Thermal Effects. Proceedings of the IEDM Conference 2017.

This research was funded by the SNSF, the Werner Siemens Foundation an ETH Research Grant as well as the Swiss National Supercomputing Centre (CSCS).

Promoting young Researchers

The SNSF has launched a new funding scheme to support researchers working towards a professorship. SNSF Eccellenza Grants allow tenure-track assistant professors to form a new research team and lead an ambitious scientific project. SNSF Eccellenza Professorial Fellowships cover the salaries of assistant professors as well as their project costs. The new scheme replaces the SNSF professorship grant, which has supported 691 researchers since its launch in 2000. And it has done so with great success: approx. 80% of grantees went on to obtain a professorship at a higher education institution in Switzerland or abroad.

Contact

Prof. Mathieu Luisier
Integrated Systems Laboratory
ETH Zurich
CH-8092 Zurich
Telephone: +41 44 632 53 53 or +41 79 454 93 78
E-mail: mluisier@iis.ee.ethz.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-171204-press-release-id...
https://iis-people.ee.ethz.ch/~mluisier/iedm_abstract_ducry.pdf
http://www.snf.ch/en/funding/careers/eccellenza/Pages/default.aspx
http://p3.snf.ch/Project-159314 'Project: Physics-based Modeling of Electronic Devices at the Nanometer Scale'

SNF Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

nachricht EU project CALADAN set to reduce manufacturing cost of Terabit/s capable optical transceivers
11.03.2019 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>