Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-pressure scientists in Bayreuth discover promising material for information technology

25.02.2020

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory of the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) based at the University of Bayreuth.


Schematic representation of the iron oxide Fe₅O₆ after the transition to the new crystal structure at minus two degrees. Two iron ions each share one electron, thus forming a pair. With light beams (red) these ions can be processed in such a way that this bond is loosened and the atomic distance between them increases. Image: Sergey V. Ovsyannikov.

If the temperature drops to two degrees Celsius, as can be found in a household refrigerator set rather cold, a sudden structural change occurs: Iron ions, which are strung together in long chains at higher temperatures, rearrange themselves into pairs instead. Two iron ions form a bond between each other, which consists of a single shared electron only.

Applying light rays selectively from an external source can intervene in the formation of this new crystal structure. If they have a suitable wavelength, they are able to break the bond between two particular iron ions: the ion pair splits up.

As a result, the individual iron ions begin to move around somewhat, meaning their distance from each other and their physical state change. "This targeted influencing of atomic spacing at refrigerator temperatures, which are easy to achieve industrially, has great potential for application in the IT sector.

It can be used, for example, in quantum computers, for storage elements measuring only a few nanometers, or for equally tiny switches," explains Dr. Sergey Ovsyannikov from BGI, first author of the publication.

The synthesis and investigation of iron oxide Fe₅O₆ are of fundamental importance in clarifying the relationships between the crystal structure of iron oxides and their physical properties. This is a further finding of the study now published.

Interestingly, the distance between the iron ions, which are strung together in chains at normal ambient temperatures, seems to determine at exactly which lower temperature the aforementioned sudden structural change occurs, and the resulting new properties arise.

“These findings provide a valuable basis for developing new materials for information technology”, resumes Prof. Dr. Leonid Dubrovinsky from BGI, who coordinated the research work.

Background:
The significant structural change that researchers have now discovered in iron oxide Fe₅O₆ is known in physics as the "Verwey charge-order transition". Until now, such a temperature-dependent transition, which is accompanied by a change in electronic and other properties, had only been well-studied in iron oxide Fe₃O₄. In this material, however, the changes only occur when the temperature drops to minus 153 degrees Celsius. At this transition temperature, any applications for information technology would be difficult to implement.

Image for download:
https://www.uni-bayreuth.de/en/university/press/press-releases/2020/028-New-IT-M...

Wissenschaftliche Ansprechpartner:

Prof. Dr. Leonid Dubrovinsky
Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI)
University of Bayreuth
Telephone: +49 (0)921 / 55-3736 or -3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Originalpublikation:

Sergey V. Ovsyannikov et al.: A Room‐Temperature Verwey‐type Transition in Iron Oxide, Fe₅O₆. Angewandte Chemie – International Edition (2020). URL: http://dx.doi.org/10.1002/anie.201914988

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de/

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>