Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer HHI shows latest video technologies at IBC

11.09.2018

The Fraunhofer Heinrich Hertz Institute will present current and never before shown video technology innovations at IBC 2018. At the Fraunhofer joint booth 8.B80, Fraunhofer HHI researchers will show a demonstrator for consistent VR 360 degree live video streaming with a resolution bigger than 4K and a total latency of under 6 seconds. Moreover, the current version of the HEVC successor Versatile Video Coding (VVC) will be presented to the public for the first time as well as recent developments of 3D Human Body Reconstruction for Vir-tual and Augmented Reality, which is the foundation for the volumetric video studio that opened at film park Potsdam-Babelsberg in June 2018.

Live end to end streaming of VR360 degree 10K video with MPEG-OMAF and HEVC tiles


Streaming high-quality VR360 degree video with resolutions up to 10K x 4K consumes large amounts of bandwidth. Moreover, the encoded video requires decoding capabilities beyond 4K video at the receiving side, e.g. on VR glasses with a mobile phone. Fully standardized tile-based streaming solves these issues by spatially segmenting the 360 degree video into tiles.

Each tile is encoded with HEVC at the original high-definition and an additional low-definition resolution. The new MPEG-OMAF standard allows to package the HEVC tile streams in a way that the receiver, e.g. VR glasses or a TV screen, can request the high-definition tiles for the user's viewport and low-definition tiles for the areas out of sight. The tiles are aggregated at the end device into a single HEVC compliant video stream and decoded with a legacy hardware video decoder on the end device.

At IBC 2018, Fraunhofer HHI showcases for the first time in Europe a demonstrator for consistent VR 360 degree live video streaming with a resolution bigger than 4K. This includes high-resolution 360 degree video capturing and live rendering by the Fraunhofer HHI Omnicam-360 with a resolution of 10K x 4K, HEVC tile-based live encoding with the Fraunhofer HHI HEVC encoder, packaging according to the MPEG-OMAF viewport-dependent media profile and high-quality playback on VR glasses and TV screens.

Versatile Video Coding (VVC), compression beyond HEVC

Compressed video data are growing at a faster rate than ever before. Already today, video data make up by far the highest percentage of bits on the Internet and in mobile data traffic. This demonstrates the need for even more efficient compression, which goes beyond the current High Efficiency Video Coding Standard (HEVC).

In order to master this demanding challenge, the ITU-T Video Coding Expert Group (VCEG) and the ISO/IEC Moving Pictures Expert Group (MPEG) have already started working together in the Joint Video Experts Team (JVET). In April 2018, Fraunhofer HHI and other leading technology companies successfully proposed cutting edge coding technology with compression capability beyond HEVC. This marked the starting point of the Versatile Video Coding (VVC) standardization activity. The VVC standard is expected to provide 50% bit rate reduction over HEVC when finalized by 2020.

At IBC 2018, Fraunhofer HHI showcases the most recent version of the VVC reference codec (VTM-2.0). This early version already demonstrates significant coding efficiency improvements over HEVC for content ranging from standard High Definition (HD) to High Dynamic Range Ultra-HD content.

Volumetric Video Production and Workflow

Fraunhofer Heinrich Hertz Institute and VoluCap GmbH present a novel and innovative capture studio as well as a processing workflow for high quality volumetric video productions targeting future VR/AR media productions.

In June 2018, the first volumetric video studio on European mainland was opened at the Filmpark Potsdam-Babelsberg, Germany. Real persons are captured with multiple high-resolution cameras in a professional studio environment. A powerful processing suite automatically generates naturally moving dynamic 3D models, which can be integrated in AR/VR applications. The system supports diffuse or synchronized scenic lighting from any direction, automatic keying, and flexible multi-camera arrangement.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

More articles from Information Technology:

nachricht Controlling superconducting regions within an exotic metal
11.10.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Patented concept from Halle: novel, high-performance diodes and transistors
08.10.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>