Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye-tracking glasses provide a new vision for the future of augmented reality

30.10.2018

Battery-free eye-tracking glasses developed at Dartmouth College could create an even more realistic experience for augmented reality enthusiasts. The new technology improves player controls for gaming and allows for more accurate image displays.

High power consumption and cost have kept eye trackers out of current augmented reality systems. By using near-infrared lights and photodiodes, Dartmouth's DartNets Lab has created an energy-efficient, wearable system that tracks rapid eye movements and allows hands-free input of system commands.


Integrating eye tracker into a regular pair of glasses, the system relies on NIR lights and photodiodes for eye tracking and is powered by two thin solar cells on the arms of the glasses.

Photo courtesy of DartNets Lab

The glasses, which can also help monitor human health, are being introduced at MobiCom 2018 taking place from October 29-November 2 in New Delhi, India.

"This is an exciting advancement for gamers, developers and other users of smart glasses," said Xia Zhou, an associate professor of computer science at Dartmouth and project lead, "it's the first-ever eye tracker that can fit into your everyday glasses and run without batteries."

Using the eyes as effective input devices in human-to-computer interaction systems like video games requires precision tracking of rapid eye movements at the sub-millimeter level. Ideal tracking devices should be portable and consume low levels of power to eliminate frequent charging. Up until now, no such system has existed.

According to the Dartmouth research team, existing wearable eye trackers fall short mainly because of the inability to match high tracking performance with low energy consumption. Most trackers use cameras to capture eye images, requiring intensive image processing and resulting in high costs and the need for clunky external battery packs.

"We took a minimalist approach that really pays off in power use and form factor," said Tianxing Li, a PhD student at Dartmouth and author of the research paper. "The new system opens a wide range of uses for eye-tracking applications."

To make the Dartmouth system work, researchers needed to detect the trajectory, velocity, and acceleration of the eye's pupil without cameras. Near-infrared lights are used to illuminate the eye from various directions while photodiodes sense patterns of reflected light. Those reflections are used to infer the pupil's position and diameter in real time through a lightweight algorithm based on supervised learning.

The prototype was built with off-the-shelf hardware components and integrated into a regular pair of glasses that track four stages of eye movement known as fixation, smooth pursuit, saccade and blinking. Experiments showed that the system achieves super high accuracy with low error for pupil tracking.

"By detecting the type of eye movement, the system can adapt sensing and computation. Some movements have predictable trajectories, allowing the system to infer subsequent pupil position and minimizing energy use." said Li.

With power consumption that is hundreds of times lower than current systems, the Dartmouth eye tracker can be powered by energy harvested from indoor lighting, meaning that no batteries are required. The battery-free eye-tracker system is also easier to integrate into a regular pair of glasses.

According to the paper: "Although solar energy harvesting has been studied extensively in the literature, to the best of our knowledge, there have been no systematic measurements with setups similar to ours." The layout of the Dartmouth eye-tracker system is made unique by the placement of solar cells vertically on the side of the arms of the glasses to harvest energy from indoor lighting under various user activities.

The low-cost system can be used for augmented reality game and display systems. By allowing for a more precise measurements of eye position, the system can one day eliminate the need for hand controllers and can result in more efficient rendering of images by display systems, meaning higher quality images.

The study was conducted exclusively indoors because strong infrared light outdoors can saturate light sensors in the current prototype. Future research includes adapting the light sensor gain in the system for outdoor use and improving detection of certain rapid eye movements.

With more advancement, continuous eye tracking can also be used to identify health issues like mental disorders, to detect cognitive states like fatigue, and to assess the effectiveness of clinical treatments. Future models will also be optimized for a more miniaturized look and even better integration into regular glasses with various shapes.

###

Editor's Notes:

The research paper and accompanying video may be found at: https://home.cs.dartmouth.edu/~xia/

About Dartmouth

Founded in 1769, Dartmouth is a member of the Ivy League and offers the world's premier liberal arts education, combining its deep commitment to outstanding undergraduate and graduate teaching with distinguished research and scholarship in the arts and sciences and its three leading professional schools: the Geisel School of Medicine, Thayer School of Engineering and Tuck School of Business.

David Hirsch | EurekAlert!

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>