Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drones learn to navigate autonomously by imitating cars and bicycles

23.01.2018

Developed by UZH researchers, the algorithm DroNet allows drones to fly completely by themselves through the streets of a city and in indoor environments. Therefore, the algorithm had to learn traffic rules and adapt training examples from cyclists and car drivers.

All today’s commercial drones use GPS, which works fine above building roofs and in high altitudes. But what, when the drones have to navigate autonomously at low altitude among tall buildings or in the dense, unstructured city streets with cars, cyclists or pedestrians suddenly crossing their way? Until now, commercial drones are not able to quickly react to such unforeseen events.


By imitating cars and bycicles, the drone automatically learned to respect the safety rules.

UZH


http://rpg.ifi.uzh.ch/dronet.html

UZH

Integrate autonomously navigating drones

Researchers of the University of Zurich and the National Centre of Competence in Research NCCR Robotics developed DroNet, an algorithm that can safely drive a drone through the streets of a city. Designed as a fast 8-layers residual network, it produces two outputs for each single input image: a steering angle to keep the drone navigating while avoiding obstacles, and a collision probability to let the drone recognise dangerous situations and promptly react to them.

“DroNet recognises static and dynamic obstacles and can slow down to avoid crashing into them. With this algorithm we have taken a step forward towards integrating autonomously navigating drones into our everyday life”, says Davide Scaramuzza, Professor for Robotics and Perception at the University of Zurich.

Powerful artificial intelligence algorithm

Instead of relying on sophisticated sensors, the drone developed by Swiss researchers uses a normal camera like that of every smartphone, and a very powerful artificial intelligence algorithm to interpret the scene it observes and react accordingly. The algorithm consists of a so-called Deep Neural Network. “This is a computer algorithm that learns to solve complex tasks from a set of ‘training examples’ that show the drone how to do certain things and cope with some difficult situ-ations, much like children learn from their parents or teachers”, says Prof. Scaramuzza.

Cars and bicycles are the drones’ teachers

One of the most difficult challenges in Deep Learning is to collect several thousand ‘training examples’. To gain enough data to train their algorithms, Prof. Scaramuzza and his team collected data from cars and bicycles, that were driving in urban environments. By imitating them, the drone automatically learned to respect the safety rules, such as “How follow the street without crossing into the oncoming lane”, and “How to stop when obstacles like pedestrians, construction works, or other vehicles, block their ways”.

Even more interestingly, the research-ers showed that their drones learned to not only navigate through city streets, but also in completely different environments, where they were never taught to do so. Indeed, the drones learned to fly autonomously in indoor environments, such as parking lots and office’s corridors.

Toward fully autonomous drones

This research opens potential for monitoring and surveillance or parcel delivery in cluttered city streets as well as rescue operations in disastered urban areas. Nevertheless, the research team warns from exaggerated expectations of what lightweight, cheap drones can do. “Many technological issues must still be overcome before the most ambitious applications can become reality,” says PhD Student Antonio Loquercio.

Literature:
Antonio Loquercio, Ana Isabel Maqueda, Carlos Roberto del Blanco, and Davide Scaramuz-za. DroNet: Learning to Fly by Driving. IEEE Robotics and Automation Letters, 22. January 22, 2018. DOI: 10.1109/LRA.2018.2795643

Paper, video, and research page: http://rpg.ifi.uzh.ch/dronet.html

Contact:
Prof. Dr. Davide Scaramuzza
University of Zurich
Director of the Robotics and Perception Group
Tel: +41 44 635 24 07
E-Mail: press.scaramuzza@ifi.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2018/DroNet_drone.html

Melanie Nyfeler | Universität Zürich

Further reports about: Robotics algorithm artificial bicycles drone high altitudes pedestrians urban environments

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>