Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-based weather forecast: New algorithm outperforms mainframe computer systems

13.02.2020

New algorithm solves complex problems more easily and more accurately on a personal computer while requiring less processing power than a supercomputer

The exponential growth in computer processing power seen over the past 60 years may soon come to a halt. Complex systems such as those used in weather forecast, for example, require high computing capacities, but the costs for running supercomputers to process large quantities of data can become a limiting factor.


Use of SPA ensures that errors in temperature forecast are reduced significantly in comparison with those of other procedures

ill./©: Illia Horenko

Researchers at Johannes Gutenberg University Mainz (JGU) in Germany and Università della Svizzera italiana (USI) in Lugano in Switzerland have recently unveiled an algorithm that can solve complex problems with remarkable facility – even on a personal computer.

Exponential growth in IT will reach its limit

In the past, we have seen a constant rate of acceleration in information processing power as predicted by Moore's Law, but it now looks as if this exponential rate of growth is limited. New developments rely on artificial intelligence and machine learning, but the related processes are largely not well-known and understood.

"Many machine learning methods, such as the very popular deep learning, are very successful, but work like a black box, which means that we don't know exactly what is going on. We wanted to understand how artificial intelligence works and gain a better understanding of the connections involved," said Professor Susanne Gerber, a specialist in bioinformatics at Mainz University.

Together with Professor Illia Horenko, a computer expert at Università della Svizzera italiana and a Mercator Fellow of Freie Universität Berlin, she has developed a technique for carrying out incredibly complex calculations at low cost and with high reliability.

Gerber and Horenko, along with their co-authors, have summarized their concept in an article entitled "Low-cost scalable discretization, prediction, and feature selection for complex systems" recently published in Science Advances.

"This method enables us to carry out tasks on a standard PC that previously would have required a supercomputer," emphasized Horenko. In addition to weather forecasts, the research see numerous possible applications such as in solving classification problems in bioinformatics, image analysis, and medical diagnostics.

Breaking down complex systems into individual components

The paper presented is the result of many years of work on the development of this new approach. According to Gerber and Horenko, the process is based on the Lego principle, according to which complex systems are broken down into discrete states or patterns. With only a few patterns or components, i.e., three or four dozen, large volumes of data can be analyzed and their future behavior can be predicted.

"For example, using the SPA algorithm we could make a data-based forecast of surface temperatures in Europe for the day ahead and have a prediction error of only 0.75 degrees Celsius," said Gerber. It all works on an ordinary PC and has an error rate that is 40 percent better than the computer systems usually used by weather services, whilst also being much cheaper.

SPA or Scalable Probabilistic Approximation is a mathematically-based concept. The method could be useful in various situations that require large volumes of data to be processed automatically, such as in biology, for example, when a large number of cells need to be classified and grouped.

"What is particularly useful about the result is that we can then get an understanding of what characteristics were used to sort the cells," added Gerber. Another potential area of application is neuroscience. Automated analysis of EEG signals could form the basis for assessments of cerebral status. It could even be used in breast cancer diagnosis, as mammography images could be analyzed to predict the results of a possible biopsy.

"The SPA algorithm can be applied in a number of fields, from the Lorenz model to the molecular dynamics of amino acids in water," concluded Horenko. "The process is easier and cheaper and the results are also better compared to those produced by the current state-of-the-art supercomputers."

The collaboration between the groups in Mainz and Lugano was carried out under the aegis of the newly-created Research Center Emergent Algorithmic Intelligence, which was established in April 2019 at JGU and is funded by the Carl Zeiss Foundation.

Image:
https://download.uni-mainz.de/presse/10_idn_spa_algorithmus_01.jpg
Use of SPA ensures that errors in temperature forecast are reduced significantly in comparison with those of other procedures
ill./©: Illia Horenko

Read more:
https://www.uni-mainz.de/presse/aktuell/8760_DEU_HTML.php – Carl Zeiss Foundation supports the establishment of a new research center for artificial intelligence at Mainz University (2 Oct. 2019)

Wissenschaftliche Ansprechpartner:

Junior Professor Dr. Susanne Gerber
Institute of Developmental Biology and Neurobiology (IDN) and
Center for Computational Sciences in Mainz ((CSM)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-27331
e-mail: sugerber@uni-mainz.de
https://csg.uni-mainz.de/susanne-gerber/

Originalpublikation:

S. Gerber et al., Low-cost scalable discretization, prediction, and feature selection for complex systems, Science Advances 6:5, 29 January 2020,
DOI:10.1126/sciadv.aaw0961
https://advances.sciencemag.org/content/6/5/eaaw0961/tab-pdf

Weitere Informationen:

https://csg.uni-mainz.de/susanne-gerber – Susanne Gerber
https://csg.uni-mainz.de – Computational Systems Genetics Group at JGU
https://www.blogs.uni-mainz.de/fb10-compscien/ – Center for Computational Sciences in Mainz
https://www.ics.usi.ch/index.php/people-detail-page/20-illia-horenko – Illia Horenko at the Institute of Computational Science at Università della Svizzera italiana

Kathrin Voigt | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Making the internet more energy efficient through systemic optimization
13.02.2020 | Chalmers University of Technology

nachricht 3D scanner facilitates forensics at the crime scene
13.02.2020 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Computer-based weather forecast: New algorithm outperforms mainframe computer systems

13.02.2020 | Information Technology

Project provides information on energy recovery from agricultural residues in Germany and China

13.02.2020 | Ecology, The Environment and Conservation

New material has highest electron mobility among known layered magnetic materials

13.02.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>