Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CiViQ brings quantum technologies to the telecommunications arena

21.11.2018

The project CiViQ is part of the European Quantum Flagship Initiative. The aim is to develop quantum cryptography that can be easily integrated into existing telecommunication networks. In this way, users can establish connections that in principle do not allow for an undetectable interception. The consortium consists of 21 partners from nine countries covering the entire value chain of quantum cryptography. Fraunhofer HHI is developing a quantum cryptography receiver in CiViQ. At this current time, about every second bit transported on the Internet comes into contact with classical receiver technology of Fraunhofer HHI, which also forms the basis for this quantum development.

In over 200 years, the world has experienced four major industrial revolutions. While the first implemented steam power for mechanized production, the second was based on electric power to drive mass production, the third used electronics and computing to automate this production, and finally the fourth used digital technologies to radically change the way we interact and connect, the way we work and live and even the way we may view the world of today.


This fourth revolution addresses a new way of sharing information that deals with massive and exponentially incremental data creation and storage as well as data traffic at global scales, in most cases, driven by new fast growing technologies such as the Internet of Things, Big data, virtual reality, autonomous vehicles and other applications of artificial intelligence.

Many of this information, e.g. related to health, finance or even defence-related communication, is extremely sensitive and needs to be handled with protocols and procedures that ensure the highest degree of security.

Present day cryptography is in danger due to the advent of quantum computers, which will instantly break most methods currently considered secure and widely used. Such quantum based protocols and systems bring additional methods that avoid any cryptographic message being broken by any computer at all, present or future.

For this reason, “classical” cryptography can be extended to also include “quantum cryptography”-based protocols, which rely on the foundation of quantum mechanics to add a future-proof physical/hardware layer to the overall security-protecting architecture of the communication infrastructures.

Quantum Key Distribution (QKD) is the most widely used among quantum cryptography protocols. Since its inception in the late 80s, the advances in QKD have been extraordinary. However, its potential for applications in cybersecurity has not yet been fully exploited.

Thus, significant challenges still remain, mainly because the QKD systems currently used for specific security services are often expensive, exhibit poor flexibility, and cannot operate seamlessly in telecommunication networks.

The new European project CiViQ (Continuous Variable Quantum Communications) will focus on solving these challenges. Selected as one of the 20 projects to start the Quantum Flagship (an ambitious 1b€ initiative supported by the European Commission over the next 10 years), CiViQ aims at developing flexible and low-cost QKD systems that can be integrated easily into emerging telecommunication infrastructures.

It will also put forward novel quantum cryptography systems and protocols, with the ultimate goal of offering accessible, innovative services to individuals, industries and institutions and thus to meet the needs of the secure telecommunications market.

ICREA Prof. at ICFO Valerio Pruneri, coordinator of the project, comments “In the next three years, CiViQ will put together technology to meet specific network security requirements. An end-user driven approach together with flexible integration into telecommunication networks are a prerequisite for a successful impact on the cryptography and cybersecurity markets.”

To do this, the project brings together a consortium of 21 partners that cover the entire supply chain of QKD, from academic research groups, component manufacturers, industrial equipment suppliers and telecommunication network operators/end users. Five Research Institutes, six Universities, two SMEs, and eight large companies will contribute through research in areas that include, among others, quantum protocol design and security analysis, certification, integrated photonics, and, system and network engineering.

The partners will combine their expertise to ultimately promote quantum-enhanced security services and drive the creation of novel commercial applications, strengthening the competitiveness of the European economic system in the field of Quantum Technologies.

Fraunhofer HHI has a long-term experience in optical communication technology, which will be used for quantum technologies. Fraunhofer HHI’s technology, for example, are widely used in optical communication networks. Especially the Mach-Zehnder IQ modulator and the coherent receiver are components in transatlantic and transpacific transmission links, so that approximately every second bit passing one of these links comes into contact with a technology of Fraunhofer HHI.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI
Further information:
http://www.hhi.fraunhofer.de

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>