08.01.2020

Classically there is a clear distinction between theoretical and applied mathematics in the classification of different fields in the mathematical sciences. Bernd Sturmfels at the Max Planck Institute for Mathematics in the Sciences, along with Paul Breiding and Sascha Timme at the Technical University of Berlin present a novel approach that illustrates how this line can be blurred. They developed a software, which is not only able to compute numerical solutions for systems of polynomial equations, but can also be employed to answer classical questions of theoretical mathematics. Their results made the cover story of the January issue of the "Notices of the American Mathematical Society".

The article "3264 Conics in a Second" exemplifies how mathematical software can serve as a bridge between theoretical problems and applied methods. Besides creating the extensive numerical software package "HomotopyContinuation.jl", the authors also established an easily accessible website, which vividly showcases the various applications of the software.

One of these applications, in turn, constitutes the solution to a classical geometric problem, which was made even more accessible with a webapp.

Steiner's conic problem

The published paper revolves around a classical geometric problem from the perspective of modern numerical algorithms. In 1848 the mathematician Jakob Steiner posed the question of finding the number of conics tangent to five given conics.

A conic is a planar curve given by the intersection of the surface of a cone with a plane, yet it also constitutes the zero set of a quadratic equation in two variables. Even though Steiner's question initially seems quite academically rigorous in nature it is pertinent to modern applications. The conic problem is regarded as the origin of modern intersection theory.

This theory then forms the foundation for modern algorithms to compute the roots of polynomial systems, which is a fundamental problem in many applied fields: robotics, material sciences, machine learning, biology or dynamical systems theory are just a few exemplary fields, where polynomial equations need to be solved.

Software package HomotopyContinuation.jl

Exactly these numerical computations form the basis of the authors specialized software package HomotopyContinuation.jl, which was developed for Julia, a dynamic programming language focused on high-performance numerical analysis.

The accompanying website not only offers an all-encompassing software manual, but also contextualizes the software through an assortment of applications ranging from computer vision, robotics, chemistry, mathematics of data and algebraic geometry.

A variety of guides introduce the user to the software features and explain how they can be applied to numerous problems. Such as Steiner's conic problem, which can be formulated as a problem of finding the roots of a polynomial system. The customized software package is able to compute these solutions within a mere second.

The scientists at the Max Planck Institute and the Technical University of Berlin created a web interface accompanying their publication which allows the reader to easily compute the 3264 solutions for their chosen conics (see juliahomotopycontinuation.org/diy).

This innovative form of science communication is a novelty for publications in the Notices. The authors were able to use their software to compute exact equations for arrangements with real solutions to Steiner's conic problem.

Thus, they strikingly demonstrated how theoretical results involve numerical procedures, as well as the possible application of numerical methods in proofs of specific theoretical results.

Dr. Paul Breiding

Technical University of Berlin

Institute of Mathematics

Mail: p.breiding@tu-berlin.de

http://www.math.tu-berlin.de/~breiding

"3264 Conics in a Second" in the Notices of the American Mathematical Society

http://www.ams.org/journals/notices/202001/rnoti-p30.pdf

DOI: https://doi.org/10.1090/noti2010

http://www.juliahomotopycontinuation.org Information regarding the software HomotopyContinuation.jl

Jana Gregor | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

**Further reports about:**
> Max Planck Institute
> Naturwissenschaften
> algebraic
> conic
> geometric
> machine learning
> material sciences
> planar curve
> programming language
> web interface

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Innovative Technologies for Satellites

07.04.2020 | Julius-Maximilians-Universität Würzburg

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Anzeige

Anzeige

Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

02.04.2020 | Event News

Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks

Science & Research

Science & Research

NASA | A Year in the Life of Earth's CO2

NASA Computer Model Provides a New Portrait of Carbon Dioxide

Black Holes Come to the Big Screen

The new movie "Interstellar" explores a longstanding fascination, but UA astrophysicists are using cutting-edge technology to go one better.

NASA's Swift Mission Observes Mega Flares from a Mini Star

NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star.

NASA | Global Hawks Soar into Storms

NASA's airborne Hurricane and Severe Storm Sentinel or HS3 mission, will revisit the Atlantic Ocean for the third year in a row.

Baffin Island - Disappearing ice caps

Giff Miller, geologist and paleoclima-tologist, is walking the margins of melting glaciers on Baffin Island, Nunavut, Canada.

The Infrasound Network and how it works

The CTBTO uses infrasound stations to monitor the Earth mainly for atmospheric explosions.