Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial synaptic device simulating the function of human brain

10.09.2018

A research team led by Director Myoung-Jae Lee from the Intelligent Devices and Systems Research Group at DGIST has succeeded in developing an artificial synaptic device that mimics the function of the nerve cells (neurons) and synapses that are response for memory in human brains.

Synapses are where axons and dendrites meet so that neurons in the human brain can send and receive nerve signals; there are known to be hundreds of trillions of synapses in the human brain.


Representation of neurons and synapses in the human brain. The magnified synapse represents the portion mimicked using solid-state devices.

Credit: Daegu Gyeongbuk Institute of Science and Technology (DGIST)

This chemical synapse information transfer system, which transfers information from the brain, can handle high-level parallel arithmetic with very little energy, so research on artificial synaptic devices, which mimic the biological function of a synapse, is under way worldwide.

Dr. Lee's research team, through joint research with teams led by Professor Gyeong-Su Park from Seoul National University; Professor Sung Kyu Park from Chung-ang University; and Professor Hyunsang Hwang from POSTEC, developed a high-reliability artificial synaptic device with multiple values by structuring tantalum oxide - a trans-metallic material - into two layers of Ta2O5-x and TaO2-x and by controlling its surface.

The artificial synaptic device developed by the research team is an electrical synaptic device that simulates the function of synapses in the brain as the resistance of the tantalum oxide layer gradually increases or decreases depending on the strength of the electric signals. It has succeeded in overcoming durability limitations of current devices by allowing current control only on one layer of Ta2O5-x.

In addition, the research team successfully implemented an experiment that realized synapse plasticity, which is the process of creating, storing, and deleting memories, such as long-term strengthening of memory and long-term suppression of memory deleting by adjusting the strength of the synapse connection between neurons.

The non-volatile multiple-value data storage method applied by the research team has the technological advantage of having a small area of an artificial synaptic device system, reducing circuit connection complexity, and reducing power consumption by more than one-thousandth compared to data storage methods based on digital signals using 0 and 1 such as volatile CMOS (Complementary Metal Oxide Semiconductor).

The high-reliability artificial synaptic device developed by the research team can be used in ultra-low-power devices or circuits for processing massive amounts of big data due to its capability of low-power parallel arithmetic. It is expected to be applied to next-generation intelligent semiconductor device technologies such as development of artificial intelligence (AI) including machine learning and deep learning and brain-mimicking semiconductors.

Dr. Lee said, "This research secured the reliability of existing artificial synaptic devices and improved the areas pointed out as disadvantages. We expect to contribute to the development of AI based on the neuromorphic system that mimics the human brain by creating a circuit that imitates the function of neurons."

###

Meanwhile, this research outcome was published on Monday July 23, 2018 in the online edition of ACS Applied Materials and Interfaces, an international journal in the field of material science. It will also be published as a cover article in the August edition.

For more information, contact:

Director Myoung-Jae Lee
Intelligent Devices and Systems Research Group
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
E-mail: myoungjae.lee@dgist.ac.kr

Associated Links

Research Paper in the online edition of ACS Applied Materials and Interfaces

https://doi.org/10.1021/acsami.8b09046

Journal Reference

Myoung-Jae Lee, Gyeong-Su Park, Sung Kyu Park, Hyunsang Hwang, et al., "Reliable Multivalued Conductance States in TaOx Memristors through Oxygen Plasma-Assisted Electrode Deposition with in Situ-Biased Conductance State Transmission Electron Microscopy Analysis," ACS Applied Materials and Interfaces July 2018.

Dajung Kim | EurekAlert!
Further information:
https://en.dgist.ac.kr/site/dgist_eng/menu/508.do?siteId=dgist_eng&snapshotId=3&pageId=429&cmd=read&contentNo=37787
http://dx.doi.org/10.1021/acsami.8b09046

More articles from Information Technology:

nachricht Graphene enables clock rates in the terahertz range
10.09.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht A cyborg cockroach could someday save your life
07.09.2018 | University of Connecticut

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

Im Focus: OLED integration in textiles: functional and eye-catching

Organic light-emitting diodes (OLED) are mainly known from televisions and smartphone displays. They can be used as lighting objects in car tail lights or lights. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as a partner for customer-specific OLED development and production is now presenting OLED elements that can be integrated into textiles at the Electronics System Integration Technology Conference ESTC 2018 from September 18 - 21, 2018 in Dresden at booth no. 29.

The versatile OLEDs can not only light in color, they can also be designed in any shape and even transparent or dimmable. Applied on wafer-thin foils, they are...

Im Focus: Novel 3D printed polymer lenses for X-ray microscopes: highly efficient and low cost

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart invented a new and cost-effective method for making X-ray lenses with nanometer-sized features and excellent focusing capabilities. By using an advanced 3D printing technique, a single lens can be manufactured under a minute from polymeric materials with extremely favorable X-ray optical properties, hence the costs of prototyping and manufacturing are strongly reduced. High-throughput and high-yield manufacturing processes of such lenses are sought after world-wide, which is why the scientists have filed a patent for their invention.

X-ray microscopes are fascinating imaging tools. They uniquely combine nanometer-size resolution with a large penetration depth: X-ray microscopy or XRM is the...

Im Focus: Tilted pulses

Physicists from Konstanz produced extremely short and specifically-shaped electron pulses for materials studies in the femtosecond and attosecond range in collaboration with Munich-based institutes

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing...

Im Focus: Digital Twin meets Plug & Produce – Fraunhofer IPK at the IMTS in Chicago

Hannover Messe is expanding to the USA – and Fraunhofer IPK is joining in with a trendsetting exhibit. It combines fast and flexible design and application of the shopfloor IT with a digital twin, which ensures transparency even in complex production systems.

For the first time ever, Deutsche Messe organizes a Hannover Messe brand event outside of Germany – and Fraunhofer IPK is taking part.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Special Antibodies Could Lead to HIV Vaccine

10.09.2018 | Life Sciences

Kidnapping in the Antarctic animal world?

10.09.2018 | Life Sciences

Gallium and aluminium: new clues to the evolution of the Earth’s oceans

10.09.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>