Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An AI that makes road maps from aerial images

18.04.2018

Map apps may have changed our world, but they still haven't mapped all of it yet. In particular, mapping roads can be tedious: even after taking aerial images, companies like Google still have to spend many hours manually tracing out roads. As a result, they haven't yet gotten around to mapping the vast majority of the more than 20 million miles of roads across the globe.

Gaps in maps are a problem, particularly for systems being developed for self-driving cars. To address the issue, researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) have created RoadTracer, an automated method to build road maps that's 45 percent more accurate than existing approaches.


This is the RoadTracer map process.

Credit: MIT CSAIL

Using data from aerial images, the team says that RoadTracer is not just more accurate, but more cost-effective than current approaches. MIT professor Mohammad Alizadeh says that this work will be useful both for tech giants like Google and for smaller organizations without the resources to curate and correct large amounts of errors in maps.

"RoadTracer is well-suited to map areas of the world where maps are frequently out of date, which includes both places with lower population and areas where there's frequent construction," says Alizadeh, one of the co-authors of a new paper about the system. "For example, existing maps for remote areas like rural Thailand are missing many roads. RoadTracer could help make them more accurate."

In tests looking at aerial images of New York City, RoadTracer could correctly map 44 percent of its road junctions, which is more than twice as effective as traditional approaches based on image segmentation that could map only 19 percent.

The paper, which will be presented in June at the Conference on Computer Vision and Pattern Recognition (CVPR) in Salt Lake City, Utah, is a collaboration between MIT CSAIL and the Qatar Computing Research Institute (QCRI).

Alizadeh's MIT co-authors include graduate students Fayven Bastani and Songtao He, and professors Hari Balakrishnan,Sam Madden, and David DeWitt. QCRI co-authors include senior software engineer Sofiane Abbar and Sanjay Chawla, who is the research director of QCRI's Data Analytics Group.

How it works

Current efforts to automate maps involve training neural networks to look at aerial images and identify individual pixels as either "road" or "not road." Because aerial images can often be ambiguous and incomplete, such systems also require a post-processing step that's aimed at trying to fill in some of the gaps.

Unfortunately, these so-called "segmentation" approaches are often imprecise: if the model mislabels a pixel, that error will get amplified in the final road map. Errors are particularly likely if the aerial images have trees, buildings or shadows that obscure where roads begin and end. (The post-processing step also requires making decisions based on assumptions that may not always hold up, like connecting two road segments simply because they are next to each other.)

Meanwhile, RoadTracer creates maps step-by-step. It starts at a known location on the road, and uses a neural network to examine the surrounding area to determine which point is most likely to be the next part on the road. It then adds that point and repeats the process to gradually trace out the road one step at a time.

"Rather than making thousands of different decisions at once about whether various pixels represent parts of a road, RoadTracer focuses on the simpler problem of figuring out which direction to follow when starting from a particular spot that we know is a road," says Bastani. "This is in many ways actually a lot closer to how we as humans construct mental models of the world around us."

The team trained RoadTracer on aerial images of 25 cities across six countries in North America and Europe, and then evaluated its mapping abilities on 15 other cities.

"It's important for a mapping system to be able to perform well on cities it hasn't trained on, because regions where automatic mapping holds the most promise are ones where existing maps are non-existent or inaccurate," says Balakrishnan.

Bastani says that the fact that RoadTracer had an error rate that is 45 percent lower is essential to making automatic mapping systems more practical for companies like Google.

"If the error rate is too high, then it is more efficient to map the roads manually from scratch versus removing incorrect segments from the inferred map," says Bastani.

Still, implementing something like RoadTracer wouldn't take people completely out of the loop: The team says that they could imagine the system proposing road maps for a large region and then having a human expert come in to double-check the design.

"That said, what's clear is that with a system like ours you could dramatically decrease the amount of tedious work that humans would have to do," Alizadeh says.

Indeed, one advantage to RoadTracer's incremental approach is that it makes it much easier to correct errors - human supervisors can simply correct them and re-run the algorithm from where they left off, rather than continue to use imprecise information that trickles down to other parts of the map.

Of course, aerial images are just one piece of the puzzle. They don't give you information about roads that have overpasses and underpasses, since those are impossible to ascertain from above. As a result, the team is also separately developing algorithms that can create maps from GPS data, and working to merge these approaches into a single system for mapping.

###

This project was supported in part by the Qatar Computing Research Institute.

Media Contact

Adam Conner-Simons
aconner@mit.edu
617-324-9135

 @mit_csail

http://www.csail.mit.edu/ 

Adam Conner-Simons | EurekAlert!

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>