Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new way to see stress -- using supercomputers


Stressed materials show asymmetric distributions in simulations on Comet and Jetstream supercomputers through XSEDE allocations

It's easy to take a lot for granted. Scientists do this when they study stress, the force per unit area on an object. Scientists handle stress mathematically by assuming it to have symmetry.

Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically. Molecular model of a crystal containing a dissociated dislocation, atoms are encoded with the atomic shear strain. Below, snapshots of simulation results showing the relative positions of atoms in the rectangular prism elements; each element has dimensions 2.556 Å by 2.087 Å by 2.213 Å and has one atom at the center.

Credit: Liming Xiong

That means the components of stress are identical if you transform the stressed object with something like a turn or a flip. Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.

The findings could help scientists design new materials such as glass or metal that doesn't ice up.

That's according to a study published September of 2018 in the Proceedings of the Royal Society A. Study co-author Liming Xiong summarized the two main findings.

"The commonly accepted symmetric property of a stress tensor in classical continuum mechanics is based on certain assumptions, and they will not be valid when a material is resolved at an atomistic resolution."

Xiong continued that "the widely used atomic Virial stress or Hardy stress formulae significantly underestimate the stress near a stress concentrator such as a dislocation core, a crack tip, or an interface, in a material under deformation." Liming Xiong is an Assistant Professor in the Department of Aerospace Engineering at Iowa State University.

Xiong and colleagues treated stress in a different way than classical continuum mechanics, which assumes that a material is infinitely divisible such that the moment of momentum vanishes for the material point as its volume approaches zero.

Instead, they used the definition by mathematician A.L. Cauchy of stress as the force per unit area acting on three rectangular planes. With that, they conducted molecular dynamics simulations to measure the atomic-scale stress tensor of materials with inhomogeneities caused by dislocations, phase boundaries and holes.

The computational challenges, said Xiong, swell up to the limits of what's currently computable when one deals with atomic forces interacting inside a tiny fraction of the space of a raindrop.

"The degree of freedom that needs to be calculated will be huge, because even a micron-sized sample will contain billions of atoms. Billions of atomic pairs will require a huge amount of computation resource," said Xiong.

What's more, added Xiong, is the lack of a well-established computer code that can be used for the local stress calculation at the atomic scale. His team used the open source LAMMPS Molecular Dynamics Simulator, incorporating the Lennard-Jones interatomic potential and modified through the parameters they worked out in the paper.

"Basically, we're trying to meet two challenges," Xiong said. "One is to redefine stress at an atomic level. The other one is, if we have a well-defined stress quantity, can we use supercomputer resources to calculate it?"

Xiong was awarded supercomputer allocations on XSEDE, the Extreme Science and Engineering Discovery Environment, funded by the National Science Foundation.

That gave Xiong access to the Comet system at the San Diego Supercomputer Center; and Jetstream, a cloud environment supported by Indiana University, the University of Arizona, and the Texas Advanced Computing Center.

"Jetstream is a very suitable platform to develop a computer code, debug it, and test it," Xiong said. "Jetstream is designed for small-scale calculations, not for large-scale ones. Once the code was developed and benchmarked, we ported it to the petascale Comet system to perform large-scale simulations using hundreds to thousands of processors. This is how we used XSEDE resources to perform this research," Xiong explained.

The Jetstream system is a configurable large-scale computing resource that leverages both on-demand and persistent virtual machine technology to support a much wider array of software environments and services than current NSF resources can accommodate.

"The debugging of that code needed cloud monitoring and on-demand intelligence resource allocation," Xiong recalled. "We needed to test it first, because that code was not available. Jetstream has a unique feature of cloud monitoring and on-demand intelligence resource allocation. These are the most important features for us to choose Jetstream to develop the code."

"What impressed our research group most about Jetstream," Xiong continued, "was the cloud monitoring. During the debugging stage of the code, we really need to monitor how the code is performing during the calculation. If the code is not fully developed, if it's not benchmarked yet, we don't know which part is having a problem. The cloud monitoring can tell us how the code is performing while it runs. This is very unique," said Xiong.

The simulation work, said Xiong, helps scientists bridge the gap between the micro and the macro scales of reality, in a methodology called multiscale modeling. "Multiscale is trying to bridge the atomistic continuum. In order to develop a methodology for multiscale modeling, we need to have consistent definitions for each quantity at each level... This is very important for the establishment of a self-consistent concurrent atomistic-continuum computational tool. With that tool, we can predict the material performance, the qualities and the behaviors from the bottom up. By just considering the material as a collection of atoms, we can predict its behaviors. Stress is just a stepping stone. With that, we have the quantities to bridge the continuum," Xiong said.

Xiong and his research group are working on several projects to apply their understanding of stress to design new materials with novel properties. "One of them is de-icing from the surfaces of materials," Xiong explained. "A common phenomenon you can observe is ice that forms on a car window in cold weather. If you want to remove it, you need to apply a force on the ice. The force and energy required to remove that ice is related to the stress tensor definition and the interfaces between ice and the car window. Basically, the stress definition, if it's clear at a local scale, it will provide the main guidance to use in our daily life."

Xiong sees great value in the computational side of science. "Supercomputing is a really powerful way to compute. Nowadays, people want to speed up the development of new materials. We want to fabricate and understand the material behavior before putting it into mass production. That will require a predictive simulation tool. That predictive simulation tool really considers materials as a collection of atoms. The degree of freedom associated with atoms will be huge. Even a micron-sized sample will contain billions of atoms. Only a supercomputer can help. This is very unique for supercomputing," said Xiong.

Media Contact

Jorge Salazar


Jorge Salazar | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Tablet computers for the visually impaired
03.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Capturing the frugal beauty of complex natural tessellations
26.11.2018 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

Im Focus: Ultracold quantum mix

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

Latest News

Scientists reveal substantial water loss in global landlocked regions

03.12.2018 | Earth Sciences

To image leaky atmosphere, NASA rocket team heads north

03.12.2018 | Physics and Astronomy

The force of the vacuum

03.12.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>