Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF's 1st Science Policy Conference ponders questions on ERA, Global Research Area

29.11.2007
Never mind the politics of a superstate, just consider the scientific challenge that faces Europe. Should researchers co-operate or compete? Should there be a master plan, prepared by the ministers, funding agencies and chiefs of European science, or should Europe's commissioners encourage imagination and invention at the laboratory bench? Should Europe's science managers favour basic or blue skies research, or worry about backing science that will make money? Should research chiefs try to pick winners, or should they give chance and natural curiosity free rein and a generous helping hand and see what surprises emerge?

How, in the face of many differing national bureaucracies, research traditions and peer review practices, should they build a new kind of community of knowledge and discovery? How should they encourage partnerships that make the best of the intellectual firepower of researchers in 27 member countries and with partnerships in 17 non-European countries including the US, India, China, Brazil, Korea, Japan and even New Zealand? Or, to put it another way, is the European Research Area just a first step towards a global research area: in acronym terms a move from ERA to GLOREA?

The European Science Foundation (ESF) opened its first ever science policy conference in Strasbourg on November 28 and wrestled with questions that, for the moment, could only be answered with other questions. Should researchers be directed to tackle the obvious problems that face society - the menace of climate change, for instance, or the problem of maintaining health in an increasingly elderly populace? Or should researchers be encouraged to explore possibilities that no one had ever imagined?

"More importantly, more difficult, how do you apply science to the possibilities that might be there but you don't really know about," said Ian Halliday, President of the ESF, and a theoretical particle physicist. "My favourite example is the Americans, taking to, and grabbing, everybody's technology to make the Internet work. Think of the impact on society. That wasn't a solution to societal need. That was: there's something interesting over here that's more than just mature science. How do we make it work, how do we turn it into something."

Take the problem of what used to be considered healthy competition, but in a close-knit Europe looks increasingly like duplication of effort, or fragmentation of research funds. "What do I mean by duplication? I mean the worry in the UK or Sweden or wherever that you are funding something that is really identical to something funded in Italy or whatever. Again let me use my background. The UK had the best dark matter experiment in Europe. So did France and so did Italy. Those cannot all be true. There is real suspicion that the money could have been spent better. And that is repeated many times across Europe. So how do we get that kind of visibility and transparency?"

Dark matter makes up more than 20 per cent of the universe. All the stars and all the galaxies account for only about 4 per cent of creation. More than 70 per cent of the mass of the universe is concealed in a phenomenon sometimes called dark energy, or quintessence, or antigravity: a force so mysterious that no physicist has any confidence that it will ever be understood. Most of the galaxies, however, are embedded in an invisible but massive substance known as dark matter, and most researchers believe that, sooner or later, they will begin to identify it. Professor Halliday's point is not that any one experiment is more likely to succeed; it is that to make the best of its intellectual effort, a European research council should have been able to consider all three projects, and endorse one of them. The challenge was to get the most money to the best scientists to produce the fastest and most effective research. "I suspect much talent in Europe does not have that kind of funding," he said.

Colin Blakemore, an Oxford neuroscientist and until October head of the UK's medical research council, had a different set of questions about the new shape of scientific research in Europe. "One shouldn't lose sight of the broader goal: that integration and co-operation are not ends in themselves. They are mean to the greater benefit of science. Or are they always? Is it absolutely essential that to be successful in science Europe must have enforced trans-national co-operation? It is worth reflecting on that," he said.

Sometimes, that question was simply answered. Some scientific ventures -the huge atom-smashing collider at CERN in Geneva, for example, the human genome project and the European bioinformatics institute - were simply too big and too costly for any single university or country to attempt. There were clinical trials that worked best as transnational co-operations, and vaccine partnerships that demanded international effort. Space programmes and fusion research were also obvious examples of successful and necessary co-operations.

"The examples are there but notice that in each case one can trace the need for co-operation to a scientific objective and goal rather than enforced co-operation for its own sake," Prof Blakemore said. "We have to be very cautious, in recognising that the driver for co-operation is not co-operation itself, but it is the goal of supporting science better where co-operation is essential."

To download photos from the conference please visit http://www.esf.org/media-centre/photogallery/esf-science-policy-conference.html

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Event News:

nachricht LaserForum 2018 deals with 3D production of components
17.08.2018 | IVAM Fachverband für Mikrotechnik

nachricht Within reach of the Universe
08.08.2018 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>