Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft takes flight with three-gram 'dragonfly'

22.07.2008
On Wednesday 23 July, TU Delft will be presenting the minute DelFly Micro air vehicle.

This successor to the DelFly I and II weighs barely 3 grams, and with its flapping wings is very similar to a dragonfly. Ultra-small, remote-controlled micro aircraft with cameras, such as this DelFly, may well be used in the future for observation flights in difficult-to-reach or dangerous areas. The DelFly Micro will make a short demonstration flight during the presentation.

The DelFly Micro is a 'Micro Air Vehicle' (MAV), an exceptionally small remote-controlled aircraft with camera and image recognition software. The Micro, weighing just 3 grams and measuring 10 cm (wingtip to wingtip) is the considerably smaller successor to the successful DelFly I (2005) and DelFly II (2006). The DelFly Micro, with its minuscule battery weighing just 1 gram, can fly for approximately three minutes and has a maximum speed of 5 m/s.

Ultra-small remote-controlled, camera-equipped aircraft are potentially of great interest because they could eventually be used for observation flights in difficult-to-reach or dangerous areas.

Nature

The basic principle of the DelFly is derived from nature. The 'dragonfly' has a tiny camera (about 0.5 grams) on board that transmits its signals to a ground station. With software developed by TU Delft itself, objects can then be recognised independently. The camera transmits TV quality images, and therefore allows the DelFly II to be operated from the computer. It can be manoeuvred using a joystick as if the operator was actually in the cockpit of the aircraft. The aim is to be able to do this with the DelFly Micro too.

Miniaturisation

The development of the DelFly is above all the story of continuing miniaturisation of all the parts, from the DelFly I (23 grams and 50 cm) via the DelFly II (16 grams and 30 cm) to the present DelFly Micro (3 grams and 10 cm).

The DelFly II drew huge attention in 2006 because it could fly horizontally (21 km/hr) as well as hover, just like a hummingbird, and also fly backwards. The DelFly Micro, incidentally, cannot do this just yet.

In a few years time, the new objective of the project, the DelFly NaNo (5 cm, 1 gram) will have been developed. The Micro is an important intermediate step in this development process. A second objective for the future is for the DelFly to be able to fly entirely independently thanks to image recognition software.

Presentation

The press presentation of the DelFly Micro will be on Wednesday 23 July, from 1 pm to 2 pm in Hall A of the Sports and Cultural Centre, Mekelweg 8-10, 2628 CD Delft.

During the presentation, the DelFly Micro will make a short demonstration flight (indoors). In addition, a recent film of a flight will also be made available. This is due to the fact that it is difficult to film in this location because of the speed of the DelFly in combination with its manoeuvrability.

More information

For more information and to register for the presentation, please contact Charlotte de Kort, Marketing & Communication, Faculty of Aerospace Engineering, c.g.w.dekort@tudelft.nl , +31 6 14015135.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl
http://www.delfly.nl

More articles from Event News:

nachricht Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine
13.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Conference on Laser Polishing – LaP: Fine Tuning for Surfaces
12.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>