Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where did the Deepwater Horizon oil go? To Davy Jones' Locker at the bottom of the sea

28.10.2014

New analysis traces oil to its resting place on the Gulf of Mexico sea floor

Where's the remaining oil from the 2010 Deepwater Horizon disaster in the Gulf of Mexico?


Oil remains in the Gulf of Mexico more than four years after the Deepwater Horizon spill.

Credit: Wikimedia Commons

The location of 2 million barrels of oil thought to be trapped in the deep ocean has remained a mystery. Until now.

Scientist David Valentine of the University of California, Santa Barbara (UCSB) and colleagues from the Woods Hole Oceanographic Institution (WHOI) and the University of California, Irvine, have discovered the path the oil followed to its resting place on the Gulf of Mexico sea floor.

... more about:
»Deepwater Horizon »NSF »Oil »Sciences »UCSB »WHOI »sea floor

The findings appear today in the journal Proceedings of the National Academy of Sciences.

"This analysis provides us with, for the first time, some closure on the question, 'Where did the oil go and how did it get there?'" said Don Rice, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research along with NSF's Division of Earth Sciences.

"It also alerts us that this knowledge remains largely provisional until we can fully account for the remaining 70 percent."

For the study, the scientists used data from the Natural Resource Damage Assessment conducted by the National Oceanic and Atmospheric Administration.

The U.S. government estimates the Macondo Well's total discharge--from April until the well was capped in July--at 5 million barrels.

By analyzing data from more than 3,000 samples collected at 534 locations over 12 expeditions, the researchers identified a 1,250-square-mile patch of the sea floor on which four to 31 percent of the oil trapped in the deep ocean was deposited. That's the equivalent of 2 to 16 percent of the total oil discharged during the accident.

The fallout of oil created thin deposits that are most extensive to the southwest of the Macondo Well. The oil is concentrated in the top half-inch of the sea floor and is patchily distributed.

The investigation focused primarily on hopane, a nonreactive hydrocarbon that served as a proxy for the discharged oil.

The researchers analyzed the distribution of hopane in the northern Gulf of Mexico and found that it was concentrated in a thin layer at the sea floor within 25 miles of the ruptured well, clearly implicating Deepwater Horizon as the source.

"Based on the evidence, our findings suggest that these deposits are from Macondo oil that was first suspended in the deep ocean, then settled to the sea floor without ever reaching the ocean surface," said Valentine, a biogeochemist at UCSB.

"The pattern is like a shadow of the tiny oil droplets that were initially trapped at ocean depths around 3,500 feet and pushed around by the deep currents.

"Some combination of chemistry, biology and physics ultimately caused those droplets to rain down another 1,000 feet to rest on the sea floor."

Valentine and colleagues were able to identify hotspots of oil fallout in close proximity to damaged deep-sea corals.

According to the researchers, the data support the previously disputed finding that these corals were damaged by the Deepwater Horizon spill.

"The evidence is becoming clear that oily particles were raining down around these deep sea corals, which provides a compelling explanation for the injury they suffered," said Valentine.

"The pattern of contamination we observe is fully consistent with the Deepwater Horizon event but not with natural seeps--the suggested alternative."

While the study examined a specified area, the scientists argue that that the observed oil represents a minimum value. They believe that oil deposition likely occurred outside the study area but so far has largely evaded detection because of its patchiness.

"These findings," said Valentine, "should be useful for assessing the damage caused by the Deepwater Horizon spill, as well as planning future studies to further define the extent and nature of the contamination.

"Our work can also help assess the fate of reactive hydrocarbons, test models of oil's behavior in the ocean, and plan for future spills."

Co-authors of the paper are G. Burch Fisher and Sarah C. Bagby of UCSB; Robert K. Nelson, Christopher M. Reddy and Sean P. Sylva of WHOI and Mary A. Woo of University of California, Irvine.

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Julie Cohen, UCSB, (805) 893-7220, julie.cohen@ucsb.edu

Related Websites
NSF News: Study Identifies Source of Oil Sheens Near Deepwater Horizon Site: http://www.nsf.gov/news/news_summ.jsp?cntn_id=128494
NSF News: Gulf Oil Spill: NSF Awards Rapid Response Grant to Study Microbes' Natural Degradation of Oil: http://www.nsf.gov/news/news_summ.jsp?cntn_id=116993
NSF News: Gulf of Mexico Topography Played Key Role in Bacterial Consumption of Deepwater Horizon Spill: http://www.nsf.gov/news/news_summ.jsp?cntn_id=122736
NSF News: Chemical Make-up of Gulf of Mexico Plume Determined: http://www.nsf.gov/news/news_summ.jsp?cntn_id=120962
NSF News: Research Mission Studies Oil Spill Using Autonomous Underwater Vehicle and Mass Spectrometry: http://www.nsf.gov/news/news_summ.jsp?cntn_id=117200
NSF Grant: Collaborative Research: Oxygenation of Hydrocarbons in the Ocean: http://www.nsf.gov/awardsearch/showAward?AWD_ID=1333162&HistoricalAwards=false

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=133059&org=NSF&from=news

Further reports about: Deepwater Horizon NSF Oil Sciences UCSB WHOI sea floor

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>