Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding animal social networks can aid wildlife conservation

23.06.2017

As with humans, most animals prefer to associate with some individuals and not with others. The social structure can influence how a population responds to changes in its environment. Examining social networks is a promising technique for understanding, predicting and – if for the better – manipulating this structure. However, whereas the contribution of behavioural biology to conservation is already well recognized, the usefulness of animal social network analysis as a conservation tool has not yet been addressed.

A group of behavioural ecologists led by Lysanne Snijders from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) outlines how the understanding of relationships between animals could be applied by wildlife managers and conservationists to support their work in disease management, breeding programs, reintroductions or relocations, or for controlling problem behaviours – to name just a few.


California sea lions are very social animals and love to interact with other members of their group.

Photo: Pixabay


Infographic illustrating changes in a social network.

Infographic: Trends in Ecology & Evolution

Animal social network studies examine how the individuals of a population are socially connected, how they interact and associate. Knowledge of the social structure can help to identify the flow of information or the spread of disease, and has potential to be used as an indicator of upcoming population changes. Information of that kind would be less – or not at all – noticeable using methods purely based on population size or the observation of single individuals.

Dr Lysanne Snijders, Post Doctoral Researcher at the Department of Biology and Ecology of Fishes at IGB, describes this approach with the help of Aristotle: “The whole is greater than the sum of its parts. Combined effects of social interactions in wildlife populations do not only have important theoretical but also practical implications. Linking animal social network theory to practice can therefore stimulate the design of new practical conservation tools and generate novel insights into how animal social networks change over time.”

An example from real wildlife

For many species, it is not just diseases that can spread rapidly. Social information can also be transmitted via various routes within a group, for instance, innovative ways to search for food. In the case of the California sea lion, novel foraging strategies have led to conflict with a fishery conservation scheme.

The sea lions had discovered that salmonids migrating upriver became more concentrated at a dam, making them easy prey. Unfortunately, those salmonids were endangered species. A recent study [1] showed that knowledge of the network structure could have helped wildlife managers to detect that at first it was only a few successful individuals who “recruited” the others, and that the selective removal of these information spreaders could have contained the problem. In this case social network analysis could therefore have assisted in protecting the endangered salmonids while culling fewer sea lions.

Snijders also suggests a possible example for how animal social network analysis could be used in conservation work in Europe: “In cases of recently reintroduced group living animals, such as the European bison, social network analyses could give insights into how a population’s long-term persistence might vary with particular behavioural processes within the group. But also into how group and individual movements might be effectively manipulated to avoid human-wildlife conflicts such as entering restricted areas like farm land.”

Perspectives for implementation

In a field in which funds and time are limited, any newly suggested approach should have a distinct added value. Not every conservation challenge that is linked to a species’ social behaviour will require a social network approach to address it. The scientists also acknowledge that their proposal has to overcome another important hurdle first: before applying the knowledge of social relationships to management practices, it should become feasible and cost-effective to collect the required data in the first place. But with technological options becoming more common and affordable, an animal social network analysis approach could increasingly become an option.

There are several methods out there that have been successfully applied to map wildlife social networks, ranging from sampling individuals at fixed locations, to walking transects, to automatically spatially tracking the animals. Rapid advancements in technology, like proximity loggers and GPS tags, allow for ever smaller animal species to be tracked, while at the same time becoming more affordable. In addition, collaborations between research institutes and conservationists might provide opportunities for sharing the costs or the technology.

Article:
Snijders, L., Blumstein, D. T., Stanley C. R., Franks, D. W. (2017): Animal Social Network Theory Can Help Wildlife Conservation. Trends in Ecology and Evolution.

Read this article > https://doi.org/10.1016/j.tree.2017.05.005

References:
[1] Zachary A. Schakner, Michael G. Buhnerkempe, Mathew J. Tennis, Robert J. Stansell, Bjorn K. van der Leeuw, James O. Lloyd-Smith, Daniel T. Blumstein (2016): Epidemiological models to control the spread of information in marine mammals. DOI: 10.1098/rspb.2016.2037

Contact person:
Dr Lysanne Snijders
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
snijders@igb-berlin.de
+31 (0)624488737

About IGB:
http://www.igb-berlin.de/en
Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Katharina Bunk | idw - Informationsdienst Wissenschaft

Further reports about: Freshwater Ecology IGB aquatic ecology sea lions social network

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>