Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins ingest mollusk shells to obtain calcium for thicker eggshells

11.05.2004


It is virtually impossible for a prospective Magellanic penguin mother to find or build a soft spot to lay her eggs. So it turns out that her eggs come with extra-thick shells to withstand being laid on hard surfaces and survive being kicked around during penguin fights.



But it takes a lot of extra calcium to produce thicker shells, and a penguin can’t just run to the corner drugstore to pick up some calcium-rich antacid tablets. New research led by a University of Washington biologist shows that during the period when eggs are being laid, female penguins have significantly more mollusk shells, mainly clams and mussels, in their stomachs than males do. The mollusk shells gradually leach calcium used to form eggshells.

Penguins typically nest on hard surfaces near coastlines and, if soil conditions are right, they might build burrows. Because they can’t fly and are made to be agile swimmers rather than to walk gracefully on land, it is rare that they can collect much soft nesting material.


Still, their eggs are rarely broken because the shells are more than 50 percent thicker than expected for their size, which is about twice that of a chicken egg, said Dee Boersma. The University of Washington biology professor has studied penguins in South America, Antarctica and various South Seas islands, and said the thick-shell pattern follows for some other birds too.

"The birds that lay eggs on rocks or those that tend to lay them from great heights, like ostriches and rheas, also tend of have thicker eggshells," she said.

Both female and male penguins typically fast for a week or more before eggs are laid. Both genders ingest mollusk shells before the fast begins, which could alleviate hunger during the fast. But females lacking other sources of calcium ingest significantly more mollusk shells, which apparently supplements calcium taken from their bones for eggshell formation.

The thicker shells are important for penguins, which often nest in large colonies. Boersma has documented that, particularly in more densely populated colonies, periodic nasty fights break out and eggs or newly hatched chicks are destroyed as the adults scurry back into their nests or burrows, either during or after a fight.

"There’s a point where you can’t build strong-enough eggshells to survive fights. If you could, the chicks probably couldn’t get out," she said. "Remarkably, they don’t lose that many."

Eggs also are lost when heavy rains saturate the ground and cause burrows to collapse, but even then the thicker eggshells prove to be advantageous, since adults are able to retrieve some of those eggs.

Boersma is the lead author of a paper documenting the penguin eggshell research published recently in The Auk, a quarterly journal of the American Ornithologists’ Union. Her co-authors are Ginger Rebstock, a UW research associate in biology, and David Stokes, an assistant professor of environmental studies at California’s Sonoma State University.

From 1984 through 2001, Boersma and her colleagues gathered data on 10,023 eggs at a Magellanic penguin reserve at Punta Tombo, Argentina. Just 257 of the eggs, or 2.6 percent, were broken by anything other than predators or human-caused accidents, similar to the rate for birds that do not nest on hard surfaces or fight in the vicinity of the nest. The researchers determined that 43 percent of the broken eggs were destroyed because of fights.

The researchers also performed necropsies and examined stomach contents of penguin carcasses collected at different times of the year. In the post-egg-laying period, few penguin stomachs contained mollusk shells and the findings were the same for male and female. But during the period around egg-laying, females were far more likely to have shells in their stomachs than males.

"Basically, they’re getting a slow-calcium release for weeks before they lay their eggs," Boersma said.


The research was supported by the Wildlife Conservation Society, the Exxon/Mobil Foundation, the MKCG Foundation, the W.K. Kellogg Foundation and Friends of the Penguins.

For more information, contact Boersma at 206-616-2185, 206-616-2791 or boersma@u.washington.edu; Rebstock at 206-616-4054 or gar@u.washington.edu; or Stokes at 707-664 2722 or david.stokes@sonoma.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>