Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins ingest mollusk shells to obtain calcium for thicker eggshells

11.05.2004


It is virtually impossible for a prospective Magellanic penguin mother to find or build a soft spot to lay her eggs. So it turns out that her eggs come with extra-thick shells to withstand being laid on hard surfaces and survive being kicked around during penguin fights.



But it takes a lot of extra calcium to produce thicker shells, and a penguin can’t just run to the corner drugstore to pick up some calcium-rich antacid tablets. New research led by a University of Washington biologist shows that during the period when eggs are being laid, female penguins have significantly more mollusk shells, mainly clams and mussels, in their stomachs than males do. The mollusk shells gradually leach calcium used to form eggshells.

Penguins typically nest on hard surfaces near coastlines and, if soil conditions are right, they might build burrows. Because they can’t fly and are made to be agile swimmers rather than to walk gracefully on land, it is rare that they can collect much soft nesting material.


Still, their eggs are rarely broken because the shells are more than 50 percent thicker than expected for their size, which is about twice that of a chicken egg, said Dee Boersma. The University of Washington biology professor has studied penguins in South America, Antarctica and various South Seas islands, and said the thick-shell pattern follows for some other birds too.

"The birds that lay eggs on rocks or those that tend to lay them from great heights, like ostriches and rheas, also tend of have thicker eggshells," she said.

Both female and male penguins typically fast for a week or more before eggs are laid. Both genders ingest mollusk shells before the fast begins, which could alleviate hunger during the fast. But females lacking other sources of calcium ingest significantly more mollusk shells, which apparently supplements calcium taken from their bones for eggshell formation.

The thicker shells are important for penguins, which often nest in large colonies. Boersma has documented that, particularly in more densely populated colonies, periodic nasty fights break out and eggs or newly hatched chicks are destroyed as the adults scurry back into their nests or burrows, either during or after a fight.

"There’s a point where you can’t build strong-enough eggshells to survive fights. If you could, the chicks probably couldn’t get out," she said. "Remarkably, they don’t lose that many."

Eggs also are lost when heavy rains saturate the ground and cause burrows to collapse, but even then the thicker eggshells prove to be advantageous, since adults are able to retrieve some of those eggs.

Boersma is the lead author of a paper documenting the penguin eggshell research published recently in The Auk, a quarterly journal of the American Ornithologists’ Union. Her co-authors are Ginger Rebstock, a UW research associate in biology, and David Stokes, an assistant professor of environmental studies at California’s Sonoma State University.

From 1984 through 2001, Boersma and her colleagues gathered data on 10,023 eggs at a Magellanic penguin reserve at Punta Tombo, Argentina. Just 257 of the eggs, or 2.6 percent, were broken by anything other than predators or human-caused accidents, similar to the rate for birds that do not nest on hard surfaces or fight in the vicinity of the nest. The researchers determined that 43 percent of the broken eggs were destroyed because of fights.

The researchers also performed necropsies and examined stomach contents of penguin carcasses collected at different times of the year. In the post-egg-laying period, few penguin stomachs contained mollusk shells and the findings were the same for male and female. But during the period around egg-laying, females were far more likely to have shells in their stomachs than males.

"Basically, they’re getting a slow-calcium release for weeks before they lay their eggs," Boersma said.


The research was supported by the Wildlife Conservation Society, the Exxon/Mobil Foundation, the MKCG Foundation, the W.K. Kellogg Foundation and Friends of the Penguins.

For more information, contact Boersma at 206-616-2185, 206-616-2791 or boersma@u.washington.edu; Rebstock at 206-616-4054 or gar@u.washington.edu; or Stokes at 707-664 2722 or david.stokes@sonoma.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>