Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jena Experiment: Loss of species destroys ecosystems

28.11.2017

How serious is the loss of species globally? Are material cycles in an ecosystem with few species changed? In order to find this out, the "Jena Experiment" was established in 2002, one of the largest biodiversity experiments worldwide. Professor Wolfgang Weisser from the Technical University of Munich (TUM) reports on two unexpected findings of the long-term study: Biodiversity influences almost half the processes in the ecosystem, and intensive grassland management does not result in higher yields than high biodiversity.

An ecosystem provides humans with natural "services", such as the fertility of the soil, the quality of the groundwater, the production of food, and pollination by insects, which is essential for many fruits. Hence, intact ecosystems are crucial for the survival of all living things. What functional significance therefore does the extinction of species have?


Aerial photo of the Jena Experiment.

(Photo: The Jena Experiment)

Can the global loss of species ultimately lead to the poorer "functioning" of ecosystems? Professor Weisser from the Chair for Terrestrial Ecology at the TUM has summarized the findings of the long-term project "Jena Experiment", which is managed by the Friedrich Schiller University Jena, since its inception in a 70-page article in the journal "Basic and Applied Ecology". He was the speaker of the interdisciplinary research consortium up till the year 2015.

"One unique aspect of the Jena Experiment is the fact that we performed our experiments and analyses over 15 years", explains Prof. Weisser. "Because the influence of biodiversity is only visible after a delay, we were only able to observe certain effects from 2006 or 2007 onwards — i.e. four or five years after the beginning of the project."

If a habitat is destroyed due to human intervention, a species usually does not go extinct immediately, but instead some time later. According to these findings, this extinction then has a delayed effect on the material cycles.

The effects of biodiversity became correspondingly more pronounced over time in the Jena Experiment: In species-rich communities, the positive effects, such as carbon storage in the ground, microbial respiration, or the development of soil fauna only became more pronounced over time. On the other hand, the negative effects of monoculture also only became visible later on. "This means that the negative effects of current species extinctions will only become fully perceptible in a few years", warns Weisser.

Farmers are not more successful than nature

80,000 measurements were taken by interdisciplinary working groups from Germany, Austria, Switzerland, and the Netherlands. In more than 500 test plots, they planted varying numbers of plant species, from monocultures to mixtures of 60 species. In addition to plants, all other organisms occurring in the ecosystem were also examined — in and above the ground. In addition, soil scientists also investigated the material cycles for carbon, nitrogen, and nitrate, as well as the water cycle over the entire 15-year period.

By doing so, researchers could prove how the diversity of species affected the capacity of the ground to absorb, store, or release water. "No other experiment to date has examined the nutrient cycle with such rigor", says Prof. Wolfgang W. Wilcke from the Institute of Geoecology at the KIT in Karlsruhe. In the Jena Experiment, it was demonstrated for the first time the extent to which e.g. the nitrogen cycle of a certain piece of land depended on a wide range of factors such as species diversity, microbiological organisms, the water cycle, and plant interaction.

Among other things, the findings led to the following conclusions:

High-diversity meadows had a higher productivity than low-diversity meadows over the entire period of the Jena Experiment. Increased cultivation intensity via additional fertilization and more frequent mowing achieved the same effect: When a farmer promotes certain species and fertilizes, he is on average not any more successful than mother nature.
The energy of the biomass (bioenergy content) from high-diversity meadows was significantly higher than that from low-diversity meadows, but at the same time similar to that of many of today's highly subsidized species, such as miscanthus.

Better ecosystem services through biodiversity

High-diversity areas achieved better carbon storage.
The number of insects and other species was significantly higher.
Reciprocal interactions between species such as pollination took place more frequently.
Higher-diversity meadows transported surface water into the soil better.
High-diversity ecosystems were more stable in the case of disruptions such as droughts or floods than low-diversity ecosystems.

Due to its breadth, the Jena Experiment proves for the very first time that a loss of biodiversity results in negative consequences for many individual components and processes in ecosystems. Hence, the loss of species worldwide not only means that a percentage of the evolutionary legacy of the earth is being irrecoverably lost, and that humans are not fulfilling their duty of care towards other creatures, but will have direct, unpleasant consequences for mankind. Among other things, the loss of species also has an effect on material cycles — which in turn have a direct influence on water supply, the source of all life.

The new spokesperson for the Jena Experiment is Professor Nico Eisenhauer from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The expert from the Leipzig University will continue the experiment in order to investigate the underlying mechanisms of the biodiversity effects in greater detail. The founding members of the Jena Experiment were the Friedrich Schiller University Jena, where the scientific coordination is also based, and the Max Planck Institute for Biogeochemistry in Jena. It received substantial financial support from the German Research Foundation (DFG).

Publication:
Weisser WW., Roscher C., Meyer S., Ebeling A., Luo G., Allan E., Beßler H., Barnard R., Buchmann N., Buscot F., Engels C., Fischer C., Fischer M., Gessler A., Gleixner G., Halle S., Hildebrandt A., Hillebrand H., Kroon Hd., Lange M., Leimer S., Roux XL., Milcu A., Mommer L., Niklaus P., Oelmann Y., Proulx R., Roy J., Scherber C., Scherer-Lorenzen M., Scheu S., Tscharntke T., Wachendorf M., Wagg C., Weigelt A., Wilcke W., Wirth C., Schulze E-D., Schmid B. and Eisenhauer N.: Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions, Basic and Applied Ecology 2017, Nr. 23: 1-73.
DOI: https://doi.org/10.1016/j.baae.2017.06.002

Contact:
Prof. Dr. Wolfgang Weisser
Technical University Munich
Chair for Terrestrial Ecology
Phone: 0049/8161/71-3496
Mail: wolfgang.weisser@tum.de

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/detail/article/34323/ Article
https://mediatum.ub.tum.de/1407996?show_id=1407999&id=1407996 Photos in HighRes

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Ecology carbon storage ecosystem species water cycle

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>