Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reprogramming of macroscopic self-assembly with dynamic boundaries

14.05.2020

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart aim to understand the underlying process of self-assembly. Their findings not only provide valuable insights into fundamental physics, but could enable the design of functional materials or self-assembled miniature robots.

Self-assembly is an autonomous process where complex and functional structures are created in a bottom-up manner by the organization of a large set of components.


Figure: Dynamically moving hard boundaries confine mobile magnetic particles into reprogrammable 2D self-assembled patterns

Graphic: https://pi.is.mpg.de/uploads/ckeditor/pictures/1145/content_Reprogramming_of_macroscopic_self-assembly_with_dynamic_boundaries.png

Each component locally interacts with the others to create patterns, often with an unknown outcome: in the end, the patterns do not necessarily have a pre-conceived design.

Scientists at the Physical Intelligence Department of the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart aim to understand the underlying process of self-assembly.

As this process continuously takes place both in living and non-living systems in a multitude of scales, their motivation is to understand the rules and dynamics of self-assembly – findings that not only provide valuable insights into fundamental physics, but could enable the design of functional materials or self-assembled miniature robots.

One recent project is “Statistical reprogramming of macroscopic self-assembly with dynamic boundaries”, a paper that was published in the Proceedings of the National Academy of Sciences (PNAS) on 12th May 2020. “We are interested in gaining the ability to control the self-assembly process to elucidate fundamental physics, and also to enable the fabrication of novel material systems and design of robotic systems,” says Dr. Utku Culha, who is the first author of the publication.

Culha is a postdoctoral researcher in the Physical Intelligence Department and an expert in Soft Robotics and Bioinspired Mechanisms. “In our work, we propose a control approach that allows the programming of self-assembled patterns in a repeatable and reversible way,” Dr. Culha further explains this fundamental research.

“What we did is to confine magnetically repulsive millimeter-scale particles inside an orbitally shaken platform that provides a constant source of kinetic energy for the particles,” Dr. Zoey S. Davidson adds. He is one of the co-authors and like Dr. Culha a postdoctoral researcher. He specializes in Experimental Condensed Matter Physics. “Our confinement system compresses the freely moving magnetic particles via moving hard boundaries and traps them into diverse two-dimensional patterns.”

“Building upon our previous works, here we moved from the curiosity of exploting boundaries to steer self-assembly processes. We incidentally confirmed that mechanical shaking is functionally analogous to temperature at the Brownian motion, and came up with what can be also considered as a macroscopic simulator of colloidal self-assembly processes” adds Dr. Massimo Mastrangeli, paper co-author, MPI-IS alumnus and currently assistant professor at Delft University of Technology.

The team showed that they can statistically program these two-dimensional patterns by controlling the rate of particle compression. Moreover, their programming approach is reversible; meaning that after selecting one pattern, the system can be restored to its original state and reprogrammed to choose another. Their approach also shows the programming of material properties, as these patterns have unique elasticity and magnetic clutching properties.

They show the correlation between confinement dynamics and resulting self-assembled structures, and also demonstrate the tuning of their mechanical and magnetic properties. “This system bears the prospect of designing granular materials in a multitude of physical scales as our approach is scalable to different particle types, sizes, and counts,” Culha says.

“By using our dynamic boundary regulation approach, in the future, we would like to use small-scale mobile robot swarms instead of particles and pave the way for a completely new approach for reconfigurable robotic assembly systems,” Metin Sitti envisions. He is the Director of the Physical Intelligence Department at MPI-IS and the senior author of the publication.

About us:

Dr. Utku Culha is an expert in Soft Robotics and Bioinspired Mechanisms with a MSc degree in Computer Engineering from Bilkent University in Turkey and a Ph.D. degree in Mechanical and Process Engineering from ETH Zürich. "I want to build magnetic miniature robots using soft and deformable materials", Culha says. "I want to exploit their deformable and magnetic nature to actively change their shape in order to generate different functions. For example, the robot should swim when it is deformed like a snake, or it should grasp an object when it deforms like a pincer. But there are more possibilities, that is why I want to explore their designs and functions further using machine-learning methods."

Dr. Zoey Davidson is an expert in Experimental Condensed Matter Physics and joined the MPI-IS from the University of Pennsylvania in Philadelphia, where he did his Ph.D. in soft matter physics. "I am currently working on transferring the latest developments in soft matter physics to applications in soft robotics. In particular, I am developing micro actuators, artificial muscle, from liquid crystal elastomers to enable new capabilities in the field of microrobotics. Liquid crystal elastomers allow for controlled programmable elastic anisotropy at the micron scale, which will be used in new methods of micro manipulation and locomotion."

Dr. Massimo Mastrangeli is a tenure-track assistant professor at Delft University of Technology, where he is developing silicon/polymer-based organ-on-chip and nanoparticle-based devices. He held a research appointment at MPI-IS for soft microrobotics and granular matter, Université Libre de Bruxelles for micromechanics and capillary micromanipulation, EPFL for micro/nanofabrication and distributed robotics, and IMEC Belgium for fluidic microsystems integration and microelectronic packaging. He holds a B.Sc. and M.Sc. degree in Electronic Engineering from University of Pisa (Italy) and a Ph.D. degree in Materials Engineering from University of Leuven (Belgium).

Director Dr. Metin Sitti heads the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems, based in Stuttgart. He received his BSc and MSc degrees in electrical and electronics engineering from Bogazici University in Istanbul in 1992 and 1994, respectively, and his PhD degree in electrical engineering from the University of Tokyo in 1999. He was a research scientist at the University of California at Berkeley during 1999-2002. During 2002-2016, he was a Professor in the Department of Mechanical Engineering and Robotics Institute at Carnegie Mellon University in Pittsburgh, USA. Since 2014, he is a Director at the Max Planck Institute for Intelligent Systems.

Sitti and his team aim to understand the principles of design, locomotion, perception, learning, and control of small-scale mobile robots made of smart and soft materials. The intelligence of such robots mainly comes from their physical design, material, adaptation, and self-organization more than to their computational intelligence. Such physical intelligence methods are essential for small-scale milli- and micro-robots especially due to their inherently limited on-board computation, actuation, powering, perception, and control capabilities. Sitti envisions his novel small-scale robotic systems to be applied in healthcare or environmental remediation to name a few.

Wissenschaftliche Ansprechpartner:

Metin Sitti
Director
Physical Intelligence Department
Max Planck Institute for Intelligent Systems

sitti@is.mpg.de

Originalpublikation:

https://www.pnas.org/content/early/2020/05/06/2001272117

Weitere Informationen:

https://is.mpg.de/news/reprogramming-of-macroscopic-self-assembly-with-dynamic-b...

Linda Behringer | Max-Planck-Institut für Intelligente Systeme
Further information:
http://www.is.mpg.de/news/reprogramming-of-macroscopic-self-assembly-with-dynamic-boundaries

More articles from Machine Engineering:

nachricht MOONRISE: Bringing 3D printing to the moon – Moondust melted under lunar conditions
01.07.2020 | Laser Zentrum Hannover e.V.

nachricht Strong and ductile Damascus steels by additive manufacturing
25.06.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>