Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One third less consumption: Industry & research work together on fuel-efficient SI engines

04.03.2019

In order to meet future CO2 limits, SI engine-driven vehicles must consume significantly less fuel. A new project of the Research Association for Internal Combustion Engines (FVV) is investigating how this can be achieved. The ambitious goal is to increase the efficiency of future spark-ignition engines to up to 50 per cent. At the same time, fuel consumption is to be reduced by around one third compared with today's fleet. The project is exploring new engine technologies in interaction with electrified powertrains and synthetic fuels.

“CO2 emissions from road transport must fall significantly in the next decade. It is essential that industry and science team up to meet this challenge “, says Dietmar Goericke, Managing Director of the FVV. "


Engine test bench for the research of electrified powertrains at the Center for Mobile Propulsion (CMP)

Peter Winandy | RWTH Aachen University

In addition to electrification, more efficient internal combustion engines and carbon-neutral synthetic fuels will make a decisive contribution to achieving the CO2 targets.“

The more chemical energy contained in the fuel can be converted into mechanical power, the better the efficiency and thus the fuel consumption rate of the vehicle.

In the "ICE 2025+" research project financed from the FVV's own funds, four university institutes from Aachen, Braunschweig, Darmstadt and Stuttgart are investigating various measures aimed at significantly increasing engine efficiency. The aim of the project is to optimise the entire powertrain system in such a way as to achieve the lowest possible consumption in real world operation.

In relation to the new WLTP cycle, this means achieving an average power efficiency of around 40 per cent, and even 50 per cent at specific operating points. New passenger car spark-ignition engines currently achieve an optimum performance of around 30 % per cent.

The researchers' methodological approach consists of combining various pre-selected technologies - such as higher compression ratios or water injection - and investigating their influence on system efficiency. In order to adapt the powertrain system to real world driving conditions, various vehicle classes as well as hybrid variants - from mild 48 volts to high-voltage hybrid powertrains - will be included in the study.

The participating researchers work closely together. The first work package, which is carried out by the Institute for Internal Combustion Engines and Powertrain Systems (vkm) at Technische Universität Darmstadt, lays the foundations for vehicle simulation.

This is important in order to be able to make exact statements about the CO2 emissions of the entire vehicle under realistic operating conditions with the engine data generated in the other work packages. It is also part of the job to find an operating strategy for the electric powertrain components that enables the combustion engine to work as efficiently as possible.

The second part of the project, engine simulation, which is being carried out at the Institute for Internal Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart, consists primarily of being able to make binding statements about increases in efficiency through various combinations of technologies with the aid of rapid calculation methods.

In addition, a virtual engine is “designed“, which makes it possible to estimate the impact of external measures - such as exhaust heat recovery - on the engine.
Within "ICE 2025+", major measures to increase efficiency will not only be simulated, but also tested on a single-cylinder research engine. The Institute for Internal Combustion Engines (ivb) at Braunschweig Technical University is responsible for setting up and operating this test engine. The results obtained are not only used for technology evaluation but are also intended to improve existing simulation models.

The fourth work package, looks into the influence of carbon-neutral fuels on engine behaviour and is being carried out at the Chair of Internal Combustion Engines (vka) at RWTH Aachen University. Various synthetic fuels, both pure and blended, are being tested on a research engine for this purpose. In addition to assessing the potential of possible fuel alternatives in terms of efficiency and emissions, the results should also serve to improve existing simulation methods of the combustion process.

The results of the research project "ICE 2025+" will be available in spring 2020.

It remains to be seen which powertrains, energy sources and transport concepts will determine passenger and freight transport in 2050. In the short and medium term, energy-efficient hybrid vehicles and carbon-neutral fuels must make an effective contribution to climate-neutral mobility. For this reason, the FVV funds pre-competitive Industrial Collective Research (IGF) projects from its own financial resources in order to contribute to the long-term goal of "zero impact emission mobility".

Wissenschaftliche Ansprechpartner:

Dipl.-Ing. Dietmar Goericke, FVV Managing Director
+49 69 66031821, goericke@fvv-net.de

Originalpublikation:

https://www.fvv-net.de/en/media/press/detail/one-third-less-consumption-industry...

Dipl.-Übers. Petra Tutsch | idw - Informationsdienst Wissenschaft

More articles from Machine Engineering:

nachricht Chemnitz University of Technology Tests a Driverless Transport System at KOMSA Logistics
12.06.2019 | Technische Universität Chemnitz

nachricht Additive machines discover superalloys
17.05.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>