Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modular basic device for extractive gas analysis permits selection of very small measuring ranges

01.06.2012
The Siprocess GA700 series launched by the Siemens Industry Automation Division is a new extractive gas analyzer range with an innovative platform concept.

A modular basic device is used with local user interface, communication interfaces, power supply, basic electronics, and software. Various analyzer modules are integrated into the basic device depending on the measuring task.



Each of these modules consists of the actual analyzer and the sensor electronics, including the evaluation software and required interfaces. As the first in the range, the Oxymat module measures oxygen according to the paramagnetic alternating pressure principle. The Oxymat module ensures absolute linearity and allows extremely small measuring ranges to be selected in one device: 0 to 0.5 percent with a detection limit of 50 ppm, as well as 0 to 100 and 99.5 to 100 percent.

The Siprocess GA700 basic analyzer with enclosures for rack or wall mounting can accommodate two analyzer modules. Module replacement is simple and user-friendly, and can be carried out on site without having to replace the basic device. The parameters already set for the measurement are automatically transferred from the basic device to the replacement module.

The modules are temperature-controlled to permit quick and easy replacement without repeated recording of the temperature characteristic. Furthermore, they operate independently of ambient temperature variations, and thus provide highly stable measurements. The analyzer modules are suitable for ambient temperatures up to 50 degrees Celsius, have a uniform operating concept, and are equipped with a local user interface comprising display and keyboard. The high-resolution graphic display outputs the measured values in analog and digital forms. The operating software has been radically changed, with the focus on clear menu navigation and comprehensive user prompting.

For example, an installation wizard is available for initial commissioning, and provides clear and explicit instructions for guidance through the process. The software is provided in 12 languages for global use. During operation, the modules signal servicing intervals, calibration requirements, or remaining lifetime of parts subject to wear, thus providing the basis for predictive maintenance concepts.

The new Oxymat module for measuring oxygen is suitable for demanding applications where high requirements exist regarding reliability and measuring quality. This is ensured by modern electronics, simple operation, and a physical unit matched to the measuring task. Corrosive gas mixtures can also be measured thanks to the use of special materials in the gas path. The detector unit does not come into contact with the sample gas, and is therefore suitable for use in harsh atmospheres while simultaneously ensuring a long service life.

An Ultramat module for measuring infrared-active gases and a Calomat module for hydrogen and noble gases are also planned.

Extractive gas analyzers are used in process plants to continuously determine the concentrations of gases. They are used, for example, for safe monitoring of process flows, for ensuring high product quality, or for the reliable determination of emissions. Different physical or electrochemical procedures are used depending on the components to be measured.

You can find the text online on the special press event page for Achema 2012: www.siemens.com/press/achema

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation, building and lighting technologies. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Siemens Industry Automation Division (Nuremberg, Germany) supports the entire value chain of its industrial customers – from product design to production and services – with an unmatched combination of automation technology, industrial control technology, and industrial software. With its software solutions, the Division can shorten the time-to-market of new products by up to 50 percent. Industry Automation comprises five Business Units: Industrial Automation Systems, Control Components and Systems Engineering, Sensors and Communications, Siemens PLM Software, and Water Technologies. For more information, visit http://www.siemens.com/industryautomation

Reference Number: IIA2012063118e

Contact
Mr. Gerhard Stauss
Industry Automation Division
Siemens AG
Gleiwitzerstr. 555
90475 Nuremberg
Germany
Tel: +49 (911) 895-7945
gerhard.stauss@siemens.com

Gerhard Stauss | Siemens Industry
Further information:
http://www.siemens.com/analytics

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>