Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evaluating risk of hydrogen embrittlement: new simulation of cold cracks in high-strength steels

03.05.2018

High-strength steels play a vital role in the construction of modern vehicles and machines. If these steels are welded during the production of components, mobile hydrogen atoms can cause problems within the material: the atoms accumulate slowly at highly stressed areas of a component, resulting in the steel becoming brittle at these locations. This can result in so-called cold break formations which can lead to component failure. Dr. Frank Schweizer of the Fraunhofer Institute for Mechanics of Materials IWM has developed a simulation method with which component manufacturers can assess cold break tendencies and adjust their production accordingly.

Manufacturers of vehicle and machine components often use high-strength steels to save material in lightweight construction and for crash-relevant structural components that require exceptionally high durability. When welding these components, various factors may lead to the unwanted formation of fine cracks, which may spread and even lead to component failure.


Light microscopy image of a welded connection’s weld structure.

© Fraunhofer IWM


Laser welded connection’s weld structure (left); calculated locally diffusible hydrogen concentration depending on temperature-time-development and welding residual stress (right).

© Fraunhofer IWM

Unfortunately it is very hard or impossible to assess these factors with experiments, for example hydrogen concentration would have to be measurable in highly localized points inside the component during welding. Another difficulty: the period of time during which a break may forms is relatively long – it can form within seconds during the welding process or after a few days. This is why the reject rate of laser welded high-strength steel components to this day remains uncomfortably high.

Illustrating the influence of hydrogen traps

To enable component manufacturers to reduce the reject rate of high-strength steels, Dr. Frank Schweizer, a member of the »Microstructure, Residual Stress« group at the Fraunhofer IWM, refined industrially used methods of numerical welding simulation in his dissertation. Now he can recreate any events at highly localized component points on his computer. This even functions for very quick changes between room and melting temperatures, as they occur during welding.

»Now we can calculate the temporal development of influencing factors and their intersections accurately and monitor them virtually«, explains Schweizer. These factors include hardening structures, residual stress and localized hydrogen concentration, which can lead to crack formation in the welded component. Alongside the hydrogen which is introduced during the welding process, previously existing hydrogen in the steel is loosened up by the welding heat and rendered movable and diffusible.

»The special feature of this new method is that it also takes into account the effect of so-called hydrogen traps«, says Schweizer. He discovered that hydrogen traps greatly influence the »movable« hydrogen occurring in low hydrogen concentration for different laser welding connections. With higher hydrogen content the thermomechanical behavior of the material grows more relevant for the formation of breaks.

»The hydrogen atoms slowly collect in the narrow area of the heat-affected zone where tensile residual stress is especially high«, says Schweizer. Even after the steel has cooled down, hydrogen can collect at these points and the steel grows brittle. »Thus even after hours or days cracks may form which must lead to the component’s rejection«, explains Schweizer.

Simulation as basis for optimization of laser welding process

Simulation results are the basis for optimizing laser welding processes and sustainably preventing component failure: »Now the laser process parameters can be adjusted to keep interactions of cold crack risk factors as low as possible«, says Schweizer. More precise pre-heating and post-heating temperatures, as well as custom-fit annealing durations can be determined from simulations.

»During the planning of components a simulation is useful as well: Following the data, better component shapes can be deduced to improve local stress points and avoid cracks«, explains Schweizer. In the next step of his research, Schweizer wants to examine the influence of various materials and component surfaces on the so-called effusion of hydrogen more closely in order to more precisely interpret pre-heating and post-heating procedures in the future. Furthermore he will use this new methodology on more steels and different welding procedures.

As a data basis for Schweizer’s expanded numerical welding simulations, characteristic material values of three different high-strength steels were used: bearing steel, martensitephase steel and fine-grained steel. Characteristic material values were calculated experimentally as well as using both new and his own numerical evaluation methods. Schweizer tested his simulation models successfully in three industrially used components which were joined using different welding procedures: heat conduction welding as well as deep welding via fiber lasers and CO2 lasers.

Weitere Informationen:

https://www.iwm.fraunhofer.de/en/press/press-releases/24_04_18_evaluatingriskhyd... - Link to Press Release

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

More articles from Machine Engineering:

nachricht Integrating One’s Sights on the Factor of 10: “futureAM – Next Generation Additive Manufacturing”
26.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht BladeFactory research project: Quicker rotor blade production and a higher quality result
12.10.2018 | Fraunhofer-Institut für Windenergiesysteme IWES

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>