Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additive Manufacturing: Budget-friendly retrofit of module for wire-based laser deposition welding

05.10.2018

When economic or safety considerations rule out the use of powder materials in additive manufacturing, the option of wire-feed laser deposition welding resents itself. The Fraunhofer Institute for Production Technology IPT in Aachen has developed a smart laser module for wire deposition welding, which can easily be integrated within existing process chains, handling systems or machine tools. The engineers from Aachen will be unveiling the LMD-W-20-L module for the first time to the visitors from industry at Formnext, the Fair for Additive Technologies in Frankfurt/Main, Hall 3, Booth E70, 13-16 November 2018.

3D powder bed printing is currently the most well-known additive manufacturing process for filigree and complex metallic parts. A laser fuses the powdered material with pinpoint accuracy in a closed unit. However, there are two other less well-known additive processes which are particularly suitable for repairing or modifying larger-scale parts: powder-based and wire-fed laser deposition welding.


Processing head "LMD-W-20-L" for wire-based laser deposition welding.

Graphic: Fraunhofer IPT

Deposition welding performed using local infeed of firm, wire material is significantly more material-efficient and environmentally-friendly than powder-based laser deposition welding in which the material flows in the form of tiny particles at high pressure out of nozzle and onto the component to be melted there by the laser.

Due to the easy to handle additive material, wire-feed deposition welding, also known as Laser Metal Deposition – Wire (or LMD-W) is highly suitable for integration in existing production lines. However, the process is considerably more complex to control and therefore more fault-prone than powder-based deposition welding.

Consequently, it has previously been used mainly for rough pre-machining operations. The “LMD-W-20-L” laser machining head, developed by the Fraunhofer IPT in Aachen, is a retrofit solution, whose sturdy construction and smart sensor system equip it for combination even with industrial robot systems in the medium term.

The modular LMD head integrating conventional process chains

The cost-effective welding head works with commercially available laser optics and and does not require complex custom-made beam guidance systems. In future it will be possible to record typical faults as they arise in the course of an on-going process, permitting the causes to be analyzed during the operation and to be offset by the control system.

Lateral wire infeed at a steep angle of 20 degrees to the optical axis ensures stable processes with high fusing efficiency. The range of wire materials available already includes various types of steel, nickel and titanium-based alloys along with numerous special purpose materials. The Fraunhofer IPT is currently exploring the suitability of other alloys as part of a number of research projects.

LMD-W – Additive process with 100 percent material efficiency

The stand-out characteristic of wire-based laser deposition welding is the quasi 100 percent material efficiency since the material fed in is melted completely and applied layer-by-layer to the surface of the part.

Given the CAM support required and multi-axis process control, additional functional elements can be added to existing parts to produce a hybrid construction and permitting repairs or modifications to be undertaken. A wide range of wire based additional materials can be processed not only very cost-efficiently but also in near-net-shape ensuring that the parts turned out are of premium quality.

This press release and a printable photo are also available on the internet: http://s.fhg.de/LMD-W-20-L

Wissenschaftliche Ansprechpartner:

Stefan Gräfe M.Eng.

Fraunhofer Institute for Production Technology IPT
Steinbachstraße 17
52074 Aachen, Germany
www.ipt.fraunhofer.de/en
stefan.graefe@ipt.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/LMD-W-20-L

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Machine Engineering:

nachricht MOONRISE: Bringing 3D printing to the moon – Moondust melted under lunar conditions
01.07.2020 | Laser Zentrum Hannover e.V.

nachricht Strong and ductile Damascus steels by additive manufacturing
25.06.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>