Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of Sodium for the Enhancement of Solar Cells

17.07.2018

Latest findings published in Nature Communications

Green energy gained by photovoltaic amounts ca. 6% of Germany’s gross power production . The most common solar cells currently used are made out of silicon. So-called CIGS, solar cells out of copper, indium, gallium and selen (Cu(In,Ga)(S,Se)2, are a promising alternative with an efficiency of ca. 23%, which is the conversion rate of light to electricity.


Dr. Torsten Schwarz, postdoctoral researcher at the MPIE, analyzed the local clustering and gradients of sodium with the atom probe (seen in the image).

Max-Planck-Institut für Eisenforschung GmbH

In comparison to conventional silicon solar cells, CIGS consumes less material and production energy and are thus cheaper in production and environmentally friendly. Nevertheless, silicon solar cells are still more often used due to their high reliability. Dr. Torsten Schwarz, postdoctoral researcher at the Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf, and a team out of researchers mainly from the University of Luxembourg and the MPIE, investigated the influence of sodium doping on the growth and reliability of CIGS. The researchers published their latest findings in the journal Nature Communications.

Previous research showed that sodium increases the CIGS’s efficiency but at the same time hampers the interdiffusion of indium and gallium so that a controlled growth of the solar cell is difficult. But how does sodium influence the cell at a grain boundary and what does it do in a grain itself?

To ease the complexity of CIGS the researchers worked with monocrystalline instead of polycrystalline films. They compared the interdiffusion between the gallium-free crystal and the gallium-containing substrate with and without sodium. “We could show that sodium increases the interdiffusion of indium and gallium in monocrystalline films. The same is true for polycrystalline films but the effect takes place within a grain and not between grains, i.e. not across grain boundaries.

This means that CIGS doped with sodium experiences an enhanced indium-gallium interdiffusion and are one reason why these films are more efficient”, explains Schwarz, who mainly did atom probe tomography measurements (APT) to reveal the local clustering and gradients of sodium. These findings were also confirmed by transmission electron microscopy (TEM) analysis done by Schwarz and his colleague Dr. Alba Garzón Manjón, also postdoctoral researcher at the MPIE.

Additionally, the effect of sodium on the diffusion of gallium from the substrate through the film was measured by secondary ion mass spectrometry, energy-dispersive X-ray spectroscopy and cross-sectional nano-Auger electron spectroscopy, which were coordinated by the University of Luxembourg. The results add new experimental data on the effects of sodium doping in CIGS and give insight into the interdiffusion of indium and gallium.

The analysis revealed that sodium promotes indium and gallium intragrain diffusion and at the same time hinders diffusion across grain boundaries. Thus, grain boundaries play an important role as they act as a barrier for intergrain diffusion in conventional polycrystalline CIGS films. Through grain boundary engineering and a better control of gallium diffusion the efficiency of solar cells can be increased. The researchers aim at improving and decreasing costs for future CIGS photovoltaic technologies through a better understanding of these fundamental processes. Moreover, in September Schwarz will present newest findings on potassium doping at the International Microscopy Conference IMC19 in Sydney, Australia.

Originalpublikation:

D. Colombara, F. Werner, T. Schwarz et al: Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers. In: Nature Communications, (2018) 9:826 , DOI: 10.1038/s41467-018-03115-0

Weitere Informationen:

https://www.mpie.de/3817671/nature-com-schwarz-solar-cells

Yasmin Ahmed Salem M.A. | Max-Planck-Institut für Eisenforschung GmbH

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>