Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supersizing solar cells: researchers print module six times bigger than previous largest

02.10.2018

A perovskite solar module the size of an A4 sheet of paper, which is nearly six times bigger than 10x10 cm2 modules of that type reported before, has been developed by Swansea University researchers, by using simple and low-cost printing techniques.

The breakthrough shows that the technology works at a larger scale, not just in the lab, which is crucial for encouraging industry to take it up.


A perovskite solar module the size of an A4 sheet of paper, which is nearly six times bigger than 10x10 cm2 modules of that type reported before, has been developed by Swansea University researchers, by using simple and low-cost printing techniques.

The breakthrough shows that the technology works at a larger scale, not just in the lab, which is crucial for encouraging industry to take it up.

Credit: Specific/Swansea University


The Swansea team used an existing type of cell, a Carbon Perovskite Solar Cell (C-PSC), made of different layers -- titania, zirconia and carbon on top -- which are all printable. The breakthrough comes from the optimisation of the printing process on glass substrates as large as an A4 sheet of paper. The team ensured the patterned layers were perfectly aligned through a method called registration, well-known in the printing industry.

Credit: SPECIFIC/Swansea University

Each of the many individual cells forming the module is made of perovskite, a material of increasing interest to solar researchers as it can be made more easily and cheaply than silicon, the most commonly-used material for solar cells.

Perovskite solar cells have also proved to be highly efficient, with scores for power conversion efficiency (PCE) - the amount of light striking a cell that it converts into electricity - as high as 22% on small lab samples.

The team work for the SPECIFIC Innovation and Knowledge Centre led by Swansea University. They used an existing type of cell, a Carbon Perovskite Solar Cell (C-PSC), made of different layers - titania, zirconia and carbon on top - which are all printable.

Though their efficiency is lower than other perovskite cell types, C-PSCs do not degrade as quickly, having already proved over 1 year's stable operation under illumination.

The Swansea team's breakthrough comes from the optimisation of the printing process on glass substrates as large as an A4 sheet of paper. They ensured the patterned layers were perfectly aligned through a method called registration, well-known in the printing industry.

The entire fabrication process was carried out in air, at ambient conditions, without requiring the costly high-vacuum processes which are needed for silicon manufacture.

The Swansea team achieved good performance for their modules:

- up to 6.3% power conversion efficiency (PCE) when assessed against the "1 sun" standard, i.e. full simulated sunlight. This is world-leading for a C-PSC device of this size.

- 11% PCE at 200 lux, roughly equivalent to light levels in an average living room

- 18% PCE at 1000 lux, equating to light levels in an average supermarket.

The high efficiency ratings under indoor lighting conditions demonstrate that this technology has potential not only for energy generation outdoors but also for powering small electronic devices - such as smartphones and sensors - indoors.

Dr Francesca De Rossi, technology transfer fellow at Swansea University's SPECIFIC Innovation and Knowledge Centre, said:

"Our work shows that perovskite solar cells can deliver good performance even when produced on a larger scale than reported so far within the scientific community. This is vital in making it economical and appealing for industry to manufacture them.

The key to our success was the screen printing process. We optimised this to avoid defects caused by printing such large areas. Accurate registration of layers and patterning the blocking layer helped improve connections between cells, boosting overall performance.

There is more work still to do, for example on increasing the active area - the percentage of the substrate surface that is actually used for producing power. We are already working on it.

But this is an important breakthrough by our team, which can help pave the way for the next generation of solar cells"

###

The research was published in Advanced Materials Technologies and undertaken by researchers at SPECIFIC Innovation and Knowledge Centre, which is funded by the Engineering and Physical Sciences Research Council, Innovate UK and the European Regional Development Fund through the Welsh Government.

Notes to editors:

Read the journal article in Advanced Materials Technologies: "All Printable Perovskite Solar Modules with 198 cm2 Active Area and over 6% Efficiency":

Authors: Francesca De Rossi, Jenny A Baker, David Beynon, Katherine E A Hooper, Simone M P Meroni, Daniel Williams, Zhengfei Wei, Amrita Yasin, Cecile Charbonneau, Eifion H Jewell and Trystan M Watson; College of Engineering, Swansea University.

Funding for the research was provided by the Engineering and Physical Sciences Research Council, the SPECIFIC project, and the Welsh Government.

Swansea University is a world-class, research-led, dual campus university offering a first class student experience and has one of the best employability rates of graduates in the UK.

The University has the highest possible rating for teaching - the Gold rating in the Teaching Excellence Framework (TEF) in 2018 and was commended for its high proportions of students achieving consistently outstanding outcomes.

Swansea climbed 14 places to 31st in the Guardian University Guide 2019, making us Wales' top ranked university, with one of the best success rates of graduates gaining employment in the UK and the same overall satisfaction level as the Number 1 ranked university.

The 2014 Research Excellence Framework (REF) 2014 results saw Swansea make the 'biggest leap among research-intensive institutions' in the UK (Times Higher Education, December 2014) and achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK.

The University is in the top 300 best universities in the world, ranked in the 251-300 group in The Times Higher Education World University rankings 2018. Swansea University now has 23 main partners, awarding joint degrees and post-graduate qualifications.

The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students. The University has ambitious expansion plans as it moves towards its centenary in 2020 and aims to continue to extend its global reach and realise its domestic and international potential.

Swansea University is a registered charity. No.1138342. Visit http://www.swansea.ac.uk

For more information:

Kevin Sullivan,Swansea University Public Relations Office

Tel: 01792 513245, k.g.sullivan@swansea.ac.uk

http://www.twitter.com/SwanseaUni

http://www.facebook.com/swanseauniversity

http://www.swansea.ac.uk/ 

Kevin Sullivan | EurekAlert!
Further information:
http://dx.doi.org/10.1002/admt.201800156

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>