Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar power with a free side of drinking water

11.07.2019

A multifunctional device that captures the heat shed by photovoltaic solar panels has been developed by KAUST and used to generate clean drinking water as a way to simultaneously generate electricity and water using only renewable energy.

Water and energy production is deeply intertwined, says Wenbin Wang, a Ph.D. student in Peng Wang's labs at the University's Water Desalination and Reuse Center. Conventional solar farms use fresh water to wash dust from the panels.


A solar farm of photovoltaic panels with a heat-driven seawater desalination system beneath each panel could co-generate renewable electricity and fresh water in arid coastal areas.

Credit: © 2019 Wenbin Wang


Heat from a solar panel (upper surface) drives water vapor from seawater channels (dark blue) across porous membranes (orange) into freshwater receiver channels (light blue).

Credit: © Wenbin Wang 2019

Meanwhile, water desalination plants consume a lot of electricity to produce fresh water from seawater. "The water-energy nexus is one of the main issues threatening sustainable global development," Wenbin says.

Professor Wang and his team have developed a device that could ease this problem. Commercial PV panels turn sunlight into electricity with a maximum efficiency of 20 percent.

The remaining 80 percent is wasted, mainly just shed into the surrounding air as heat. The team has designed an integrated device that could capture this heat and use it to generate fresh water.

The researchers built a device in which a stack of water channels, separated by porous hydrophobic membranes and heat conduction layers, were attached to the underside of a commercial PV panel.

Waste heat from the panel vaporized seawater in the uppermost channel; the vapor crossed the porous membrane and condensed as fresh water in a clean water channel just below.

As the vapor condensed, its heat passed through a thermal conduction layer to the next seawater channel, recycling the energy to purify more water.

Using three stacked layers of water distillation channels, and passing the energy from layer to layer, the device produced up to 1.64 litres of water per square meter of solar panel surface every hour.

That is more than double the water output of traditional solar stills, which use a one-stage design, Wenbin says. Meanwhile, the PV panel's electricity output was unaffected by the water desalination taking place beneath it.

Carolyn Unck | EurekAlert!
Further information:
https://discovery.kaust.edu.sa/en/article/863/solar-power-with-a-free-side-of-drinking-water
http://dx.doi.org/10.1038/s41467-019-10817-6

More articles from Power and Electrical Engineering:

nachricht Energy Flow in the Nano Range
18.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>