Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report a new way to produce curvy electronics

26.09.2019

New method fills a need in emerging applications for electronic devices

Contact lenses that can monitor your health as well as correct your eyesight aren't science fiction, but an efficient manufacturing method - finding a way to produce the curved lenses with embedded electronics - has remained elusive.


A team of researchers led by University of Houston engineer Cunjiang Yu has reported a new way to manufacture curvy, three-dimensional electronics.

Credit: University of Houston

Until now. A team of researchers from the University of Houston and the University of Colorado Boulder has reported developing a new manufacturing method, known as conformal additive stamp printing, or CAS printing, to produce the lenses, solar cells and other three-dimensional curvy electronics.

The work, reported in the journal Nature Electronics, demonstrates the use of the manufacturing technique to produce a number of curvy devices not suited to current production methods. The work is also highlighted by the journal Nature.

"We tested a number of existing techniques to see if they were appropriate for manufacturing curvy electronics," said Cunjiang Yu, Bill D. Cook Associate Professor of Mechanical Engineering at the University of Houston and corresponding author on the paper. "The answer is no. They all had limitations and problems."

Instead, Yu, who is also a principal investigator with the Texas Center for Superconductivity at UH, and his team devised a new method, which they report opens the door to the efficient production of a range of curvy electronic devices, from wearables to optoelectronics, telecommunications and biomedical applications.

"Electronic devices are typically manufactured in planar layouts, but many emerging applications, from optoelectronics to wearables, require three-dimensional curvy structures," the researchers wrote. "However, the fabrication of such structures has proved challenging due, in particular, to the lack of an effective manufacturing technology."

Existing manufacturing technologies, including microfabrication, don't work for curved, three-dimensional electronics because they are inherently designed to produce two-dimensional, flat electronic devices, Yu said. But increasingly, there is a need for electronic devices that require curvy, 3-D shapes, including smart contact lenses, curved imagers, electronic antennas and hemispherical solar cells, among other devices.

These devices are small - ranging in size from millimeters to centimeters - with accuracy within a few microns.

Recognizing that, Yu and the other researchers proposed the new fabrication method, conformal additive stamp printing, or CAS printing.

CAS printing works like this: An elastomeric, or stretchy, balloon is inflated and coated with a sticky substance. It is then used as a stamping medium, pushing down on pre-fabricated electronic devices to pick up the electronics and then print them onto various curvy surfaces. In the paper, the researchers describe using the method to create a variety of curvy devices, including silicon pellets, photodetector arrays, small antennas, hemispherical solar cells and smart contact lenses.

The work was performed using a manual version of the CAS printer, although the researchers also designed an automated version. Yu said that will make it easy to scale up production.

###

In addition to Yu, co-authors include Kyoseung Sim, Song Chen, Zhoulyu Rao, Jingshen Liu, Yuntao Lu, Seonmin Jang, Faheem Ershad and Ji Chen, all with UH, and Zhengwei Li and Jianliang Xiao, both with the University of Colorado Boulder.

This work was supported by National Science Foundation.

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events 

Jeannie Kever | EurekAlert!
Further information:
http://www.uh.edu/news-events/stories/2019/september-2019/09252019-yu-curvy-electronics.php
http://dx.doi.org/10.1038/s41928-019-0304-4

More articles from Power and Electrical Engineering:

nachricht Next generation of greenhouses may be fully solar powered
10.02.2020 | North Carolina State University

nachricht How iron carbenes store energy from sunlight -- and why they aren't better at it
07.02.2020 | DOE/SLAC National Accelerator Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Empowering the cell’s disposal system to deal with disease-prone garbage

17.02.2020 | Life Sciences

Freiburg researcher investigate the origins of surface texture

17.02.2020 | Materials Sciences

How do rotor blades deform in wind gusts?

17.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>