Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water power

06.12.2001


Hydrogen power could have a bright future.
© DOE/NREL


A new material helps to make clean fuel from water.

Scientists in Japan have found a more efficient way to extract hydrogen, the ultimate ’green’ fuel, from water. They have developed a material that uses sunlight to break water molecules into their constituent elements of hydrogen and oxygen1.

The material is not yet efficient enough to be commercially viable, but its inventors believe that it can be improved. If they are right, hydrogen may soon be on tap just like natural gas.



Hydrogen burns in air without producing the sooty pollution and greenhouse gases associated with fossil fuels. The element can also power fuel cells to generate electricity. Such fuel cells can power emission-free electric vehicles.

Unfortunately, water is reluctant to give up its hydrogen. Electricity can split water, but electricity is mainly generated using polluting and nonrenewable technology.

Several ’photocatalysts’ will split water quite efficiently using ultraviolet light. But this squanders most of the Sun’s energy, which lies in the visible range. Visible-light photocatalysts, on the other hand, have tended to be either unstable, decomposing with prolonged use, or bad at splitting water.

Zhigang Zou of the National Institute of Advanced Industrial Science and Technology in Tsukuba, Japan, and co-workers have developed a photocatalyst that seems to be very stable, showing no evidence of degradation after extended use. It is not terribly efficient - over 99% of the light energy is wasted rather than used to split water - but this is respectable when compared with the competition.

The material, like the majority of visible-light photocatalysts, is a metal oxide, which generates hydrogen and oxygen when immersed in water in sunlight. The oxide contains indium, nickel and tantalum; the efficiency depends on the amount of nickel in the material.

Zou and colleagues believe that they can improve the efficiency by increasing the surface area of the photocatalyst - making it porous, for example, or grinding it into a fine powder - and by further tinkering with the chemical composition.

References

  1. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414, 625 - 627, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011206/011206-11.html

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>