Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water power

06.12.2001


Hydrogen power could have a bright future.
© DOE/NREL


A new material helps to make clean fuel from water.

Scientists in Japan have found a more efficient way to extract hydrogen, the ultimate ’green’ fuel, from water. They have developed a material that uses sunlight to break water molecules into their constituent elements of hydrogen and oxygen1.

The material is not yet efficient enough to be commercially viable, but its inventors believe that it can be improved. If they are right, hydrogen may soon be on tap just like natural gas.



Hydrogen burns in air without producing the sooty pollution and greenhouse gases associated with fossil fuels. The element can also power fuel cells to generate electricity. Such fuel cells can power emission-free electric vehicles.

Unfortunately, water is reluctant to give up its hydrogen. Electricity can split water, but electricity is mainly generated using polluting and nonrenewable technology.

Several ’photocatalysts’ will split water quite efficiently using ultraviolet light. But this squanders most of the Sun’s energy, which lies in the visible range. Visible-light photocatalysts, on the other hand, have tended to be either unstable, decomposing with prolonged use, or bad at splitting water.

Zhigang Zou of the National Institute of Advanced Industrial Science and Technology in Tsukuba, Japan, and co-workers have developed a photocatalyst that seems to be very stable, showing no evidence of degradation after extended use. It is not terribly efficient - over 99% of the light energy is wasted rather than used to split water - but this is respectable when compared with the competition.

The material, like the majority of visible-light photocatalysts, is a metal oxide, which generates hydrogen and oxygen when immersed in water in sunlight. The oxide contains indium, nickel and tantalum; the efficiency depends on the amount of nickel in the material.

Zou and colleagues believe that they can improve the efficiency by increasing the surface area of the photocatalyst - making it porous, for example, or grinding it into a fine powder - and by further tinkering with the chemical composition.

References

  1. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414, 625 - 627, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011206/011206-11.html

More articles from Power and Electrical Engineering:

nachricht MTU engineers examine lithium battery defects
27.01.2020 | Michigan Technological University

nachricht New electro-pulse plant at TU Freiberg enables energy-efficient processing of high-tech metals
23.01.2020 | Technische Universität Bergakademie Freiberg

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>