Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers create model for testing transistor reliability

01.12.2004


Researchers at Purdue University have created a "unified model" for predicting the reliability of new designs for silicon transistors – a potential tool that industry could use to save tens of millions of dollars annually in testing costs.



The model is the first method that can be used to simultaneously evaluate the reliability of two types of transistors essential for so-called CMOS computer chips, the most common type of integrated circuits in use today. The two types of transistors degrade differently over time, and the model is able to relate these two different classes of degradation simultaneously. "It is the first single tool for accurately predicting how new designs for both types of transistors will degrade over time," said Ashraf Alam, a professor of electrical and computer engineering at Purdue.

The degradation revolves around bonds between atoms of hydrogen and silicon and hydrogen and silicon dioxide. Specifically, the mathematical model enables researchers to see the rates at which these hydrogen bonds in the two types of transistors will break over time. The breaking bonds are directly related to a transistor’s long-term reliability. Because hydrogen bonds break differently in the two types of transistors, separate models have been required in conventional testing for new designs. "This testing requires a huge amount of resources, costing companies millions of dollars annually," Alam said. "If you could explain both within the same framework, then you could cut down significantly on the number of measurements required to characterize the performance of the transistors."


Findings about the new model will be detailed in a research paper to be presented Dec. 13 during the 50th annual IEEE International Electron Devices Meeting, sponsored by the Institute of Electrical and Electronics Engineers, in San Francisco. The paper was written by Alam and Purdue engineering doctoral student Haldun Kufluoglu. "A major goal of reliability models is to predict how well electronic components will work perhaps 10 years after they are manufactured," Alam said. "In order to do that, you first need to be able to understand the devices very well so that you can extrapolate how reliable they will be in the future. "You need to understand the details of how the device operates and how various materials behave over time so that you can see how the different chemical bonds will gradually break and how the integrated circuit will gradually lose its function. For a multibillion dollar electronics industry, that knowledge has huge implications."

Bonds between silicon and hydrogen are critical to the proper performance of transistors.

"Even for the tiniest transistor today, there are perhaps thousands of these silicon-hydrogen bonds," Kufluoglu said. "These bonds gradually break. Initially, it doesn’t matter because there are so many of these bonds. But over a period of time, when lots of them begin to break, the different transistors within an integrated circuit start getting out of synch."

CMOS, or complementary metal oxide semiconductor chips, are made of PMOS and NMOS transistors, both of which are essential for CMOS integrated circuits. Integrated circuits inside computers contain equal parts of PMOS (positive polarity) and NMOS (negative polarity) transistors. "The important point is that the mechanisms by which the silicon-hydrogen bonds break are different for these two types of transistors," Alam said. "And that is why, for the past 30 years, we have treated these processes with separate models, because we didn’t know how to put them in a common framework, or a common language, mathematically." The paper describes the underlying mechanism for the breaking bonds in the two types of transistors, he said.

The model not only describes the rate at which the silicon-hydrogen bonds break, but also how they "repair" themselves. "If you don’t use your computer for some period of time, say 24 hours, gradually the hydrogen that went away will diffuse back and combine with silicon to make the bond whole again," Alam said. "Researchers already knew the rates at which the broken bonds are made whole again, but because these rates are much different in the PMOS and NMOS transistors, there was no model that could explain both simultaneously." The bonds repair themselves much faster in PMOS transistors than in NMOS transistors, he said.

The new model will likely be particularly useful to test the reliability of designs for silicon-based chips that use nanotechnology to create smaller and more compact transistors than exist in today’s integrated circuits, Alam said.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Ashraf Alam, (765) 494-5988, alam@ecn.purdue.edu

Haldun Kufluoglu, (765) 494-9034, haldun@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>