Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Wind Power More Efficient

10.06.2003


A University of Ulster researcher has come up with a new method, using Artificial Intelligence techniques, to forecast wind energy more accurately than ever before.


Predicting how fast the wind will blow has always been a major problem for wind farm operators. It is essential that they have some idea of how much electricity they will be able to produce each day based on the strength of the wind.

Energy forecasting has become a critical factor in the efficient generation of power from wind turbines.

Piers Campbell and Dr Kenny Adamson, from the School of Computing and Mathematics, have employed Artificial Intelligence techniques to assess and learn from past wind flow patterns, subsequently predicting energy output up to twelve hours in advance, more precisely than ever before.



Mr Campbell, a researcher at the University, said: “There are forecasting models in existence in the UK and Ireland but they are highly inaccurate due to the fact that they were developed for a Danish market and their application in this country is simply not effective at the moment without further research.

“At present, the techniques that we have developed can forecast how much wind energy will be produced within a 12 percent margin and we hope to reduce that even further, current utility expectations work within a 50% margin of error.

“The need for forecasting is essential in increasing the competitiveness of wind energy as a renewable power source and in assisting integration with conventional power sources. The supply and demand of electricity is balanced in half-hourly trading periods and generators are required to forecast the amount of energy they will supply 3.5 hours ahead of delivery. The system then punishes generators for any imbalance, positive or negative. With such penalties in place, it is obvious how these new techniques are vital in improving the efficiency and cost effectiveness of wind farm operations.”

There are currently seven wind farm sites generating electricity in Northern Ireland, with a further eight in progress. At present, 1.8 percent of Northern Ireland’s electricity comes from renewables such as wind energy but the targets proposed by government aim to increase this to at least 15 percent by 2010.

Mr Campbell believes this is an attainable figure and one that Northern Ireland should be striving to excel: “The main advantage of wind power is that it is much cleaner and less polluting than fossil fuels. Wind energy plants produce no air pollutants or harmful green house gases that contribute to climate change.

“Using AI techniques we can also reduce the time it takes to assess an area for suitability as a wind farm site. Using current methods this can take up to one year but now we can evaluate a site much more quickly, enabling faster development of wind farms throughout the country.

“The technology will also enable developers to predict wind speeds and power output for the next 2 or 3 years rather than simply basing their assessments on the wind speeds measured over a single year.”

David Young | alfa
Further information:
http://www.ulst.ac.uk/news/releases/2003/785.html

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>