Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project pairs coal with fuel cells to create cleaner, more efficient power

30.05.2003


Ohio University engineers are leading one of the first comprehensive efforts to examine how fuel cell technology could pave the way for cleaner coal-fired power plants. Supported by a $4 million U.S. Department of Energy grant secured by the Ohio Congressional delegation, the project aims to find ways to use coal – the environmentally dirtiest but most abundant fossil fuel in the world -- to harness high-efficiency fuel cells.



Most government-sponsored energy research is focused on using natural gas to power fuel cells because it is the cleanest burning of all the fossil fuels. Ohio University researchers, however, say it’s critical to begin exploring ways to use coal as a catalyst for fuel cells because it is more abundant and less expensive than natural gas.

"We need to find ways to make coal work for us," said David Bayless, an associate professor of mechanical engineering in the Russ College of Engineering and Technology and director of the Ohio Coal Research Center. "After all, coal reserves are expected to last for at least the next 250 years, compared to 30 years for natural gas."


Fuel cells are electrochemical devices that convert chemical energy into electricity and heat. Like a battery that never needs recharging, a fuel cell will run indefinitely as long as chemical energy is present. There are several different types of fuel cells, but they’re all based on a central design that consists of two electrodes sandwiched around an electrolyte.

Fuel cells appeal to many in the energy industry because they generate electricity with little pollution and are highly efficient, using 80 to 90 percent of their energy compared to a 40 to 50 percent productivity rate with traditional combustion. In fact, the Ohio University project is part of a larger national effort by the U.S. Department of Energy’s Hydrogen, Fuel Cells and Infrastructure Technologies Program to study and develop viable fuel cell power.

Bayless and other researchers in the Ohio Coal Research Center propose teaming fuel cells with coal-derived gas, or syngas. Rather than burning coal directly, coal gasification mixes coal with steam, air and oxygen under high temperatures and pressures, resulting in chemical reactions that form a gaseous mixture of hydrogen and carbon monoxide. When introduced to fuel cells, this gas is transformed into water, producing electricity and heat in the process.

But because syngas contains hazardous contaminants such as sulfur and mercury that can damage fuel cells, Ohio University researchers need to figure out how to effectively integrate syngas with fuel cells. During the next few years, they plan to conduct experiments to see how various syngas contaminants affect fuel cells by measuring decreases or changes in fuel cell voltage, temperature, pressure and other performance-related factors.

"Once we figure out what’s happening, we can try to create better, stronger fuel cells that can withstand these contaminants or test various ways of reducing coal contaminants using current cleaning technology," said Assistant Professor of Chemical Engineering Gerardine Bötte, who is helping Bayless conduct experiments. "At this point, though, we don’t know where our research will take us."

Bayless is focusing on integrating syngas with planar solid oxide fuel cells, which are tile-shaped cells made of ceramic. But he sees coal eventually becoming an energy source for a variety of high-tech fuel cells being developed to power automobiles, laptops and homes. "I have a larger vision for coal that includes applications in many areas," Bayless says. "It’s exciting because not much is known in this field, so this gives us a chance to explore some new ideas."

One idea, he adds, is to merge the fuel cell work with another Ohio University project that uses algae to control greenhouse gas emissions from coal-fired power plants. The harvested algae could be converted into hydrogen, which would then be used to power the fuel cells, he explains.

The fuel cell project, estimated at $6.4 million, is the largest undertaken by the Ohio Coal Research Center, which studies ways to make the region’s coal a more viable energy source. It’s an effort that attracted support from the Ohio Congressional delegation – particularly through the work of U.S. Reps. David Hobson and Ralph Regula and Sen. Mike DeWine, with support from district Rep. Ted Strickland – which secured the $4 million federal appropriation for the fuel cell technology project, said Pamela Siemer, assistant vice president for external relations at Ohio University.

"Senator DeWine and Representatives Hobson, Regula and Strickland are committed to having Ohio coal included as part of the nation’s long-term plan to assure clean and abundant energy," Siemer said. "The university is deeply grateful for their commitment to Ohio coal, and particularly for the hard work in support of this innovative fuel cell project."


Additional funds beyond the four-year, $4 million grant provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy will come from Ohio University and project collaborators, including Case Western Reserve University, the Alliance, Ohio-based fuel cell company SOFCo and Nordic Energy.

Written by Melissa Rake Calhoun.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu/researchnews/

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>