Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New kind of transistor radios shows capability of nanotube technology

29.01.2008
Carbon nanotubes have a sound future in the electronics industry, say researchers who built the world’s first all-nanotube transistor radios to prove it.

The nanotube radios, in which nanotube devices provide all of the active functionality in the devices, represent “important first steps toward the practical implementation of carbon-nanotube materials into high-speed analog electronics and other related applications,” said John Rogers, a Founder Professor of Materials Science and Engineering at the University of Illinois.

Rogers is a corresponding author of a paper that describes the design, fabrication and performance of the nanotube-transistor radios, which were achieved in a close collaboration with radio frequency electronics engineers at Northrop Grumman Electronics Systems in Linthicum, Md.

The paper has been accepted for publication in the Proceedings of the National Academy of Sciences, and is to be published in PNAS Online Early Edition next week.

“These results indicate that nanotubes might have an important role to play in high-speed analog electronics, where benchmarking studies against silicon indicate significant advantages in comparably scaled devices, together with capabilities that might complement compound semiconductors,” said Rogers, who also is a researcher at the Beckman Institute and at the university’s Frederick Seitz Materials Research Laboratory.

Practical nanotube devices and circuits are now possible, thanks to a novel growth technique developed by Rogers and colleagues at the U. of I., Lehigh and Purdue universities, and described last year in the journal Nature Nanotechnology.

The growth technique produces linear, horizontally aligned arrays of hundreds of thousands of carbon nanotubes that function collectively as a thin-film semiconductor material in which charge moves independently through each of the nanotubes. The arrays can be integrated into electronic devices and circuits by conventional chip-processing techniques.

“The ability to grow these densely packed horizontal arrays of nanotubes to produce high current outputs, and the ability to manufacture the arrays reliably and in large quantities, allows us to build circuits and transistors with high performance and ask the next question,” Rogers said. “That question is: ‘What type of electronics is the most sensible place to explore applications of nanotubes?’ Our results suggest that analog RF (radio frequency) represents one such area.”

As a demonstration of the growth technique and today’s nanotube analog potential, Rogers and collaborators at the U. of I. and Northrop Grumman fabricated nanotube transistor radios, in which nanotube devices provided all of the key functions.

The radios were based on a heterodyne receiver design consisting of four capacitively coupled stages: an active resonant antenna, two radio-frequency amplifiers, and an audio amplifier, all based on nanotube devices. Headphones plugged directly into the output of a nanotube transistor. In all, seven nanotube transistors were incorporated into the design of each radio.

In one test, the researchers tuned one of the nanotube-transistor radios to WBAL-AM (1090) in Baltimore, to pick up a traffic report.

“We were not trying to make the world’s tiniest radios,” Rogers said. “The nanotube radios are a demonstration, an important milestone toward building the technology into a form that ultimately would be commercially competitive with entrenched approaches.”

The work was funded by the National Science Foundation and the U.S. Department of Energy.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>