Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful LED-based train headlight optimized for energy savings

13.02.2018

Careful LED placement cuts down on wasted energy

Researchers have designed a new LED-based train headlight that uses a tenth of the energy required for headlights using conventional light sources. If operated 8 hours every day, the electricity savings of the new design would reduce emissions of the greenhouse gas carbon dioxide by about 152 kilograms per year.


A new train headlight design uses two half-circular parabolic, or cup-shaped, aluminized reflectors with high-efficiency LEDs placed in the plane where the two reflectors come together. Combining the strong beams from each reflector generates the light intensity necessary to meet safety guidelines.

Credit: Wei-Lun Liang, National Taiwan University

Train headlights not only illuminate the tracks ahead, they also play an important role in rail transportation. Because trains are difficult to stop, the headlights must be visible from a distance far enough away to give people or vehicles on the tracks ample time to move out of the way. Traditional train headlights, which use incandescent or halogen bulbs, are bright enough to meet safety regulations but are not very energy efficient because most of the energy powering the light is converted into heat rather than visible light.

Researchers led by Guo-Dung J. Su from the Micro Optics Device Laboratory of the Graduate Institute of Photonics and Optoelectronics at National Taiwan University, Taiwan, were approached by the engineering and design company Lab H2 Inc., to design locomotive headlights that use LEDs as a light source. In addition to requiring less energy, LEDs also last longer and are smaller and more rugged than traditional light sources.

"Some LED headlight products sold on the market are designed with many LEDs that have outputs that overlap in large sections. These designs waste a lot of energy," said Wei-Lun Liang of the Micro Optics Device Laboratory, who was instrumental in designing the new train headlight. "Our research showed that electricity use can be reduced by focusing on the best way to distribute the LED energy equally."

In The Optical Society journal Applied Optics, Liang and Su report a new train headlight design based on ten precisely positioned high efficiency LEDs. The design uses a total of 20.18 Watts to accomplish the same light intensity as an incandescent or halogen lamp that uses several hundred watts. The new headlight can also be dimmed by turning off some of the LEDs to avoid blinding waiting passengers when the train passes a platform, for example.

Designing for energy efficiency

Much like those used for cars, train headlights typically combine a light source with a parabolic, or cup-shaped, reflective surface that focuses the emitted light into a beam. Although LEDs are a great option for saving energy, the most energy-efficient LEDs emit smaller spots of light. For this reason, the researchers had to combine the small outputs of multiple high-efficiency LEDs into a larger circular output to create a beam large enough to use as a train headlight.

"Combining several LEDs is more expensive and consumes more electricity than using a few single LEDs," said Liang. "Thus, we needed to determine how to best position the lowest possible number of high-efficiency LEDs needed to meet the requirements by analyzing how the parabolic surface reflected the LED lights."

The researchers' goal was a headlight that would provide light 1.25 times the brightness required by U.S. federal regulations. These regulations require train headlights to have a peak intensity of at least 200,000 candelas and illuminate a person at least 800 feet in front of the headlight.

Positioning the LEDs to save energy and meet federal guidelines came with several challenges. The researchers had to be careful to overlap the LED outputs just enough to create a large beam, but not so much that more LEDs, and thus more energy, would be needed. Also, the LEDs must be placed far enough from each other for heat to dissipate to prevent circuit damage.

Positioning the LEDS To create a high-efficiency train headlight, the researchers used two half-circular parabolic aluminized reflectors. When used together, the strong beams from each reflector combine to generate the light intensity necessary to meet federal guidelines. This design also simplified placement of the circuits needed to power the LEDs because they could be housed in the horizontal divider separating the reflectors.

To determine where to place the LEDs in the reflectors, the researchers first estimated the best location of each LED and then used a series of tests and simulations to fine-tune the final position for each LED based on its corresponding illumination pattern. "Other scientists can use the linear equation we derived for deciding the approximate positions of LEDs for other applications," said Liang. "This can substantially shorten the time required to determine LED positioning before fine-tuning the positions."

The researchers point out that headlights typically use a complete parabolic reflector surface. "We believe this is the first design to use a combination of two semi-parabolic reflector surfaces," said Liang. "By systematically analyzing the design to determine the best placement of the LEDs in the reflector, we were able to minimize electricity consumption while satisfying requirements associated with traffic safety."

The researchers are now working to turn their design into a commercial product. Even though the new design exhibits low power consumption, it still generates some waste heat. Before the design can be commercialized the researchers will need to develop and test a heat dissipation system for the new headlight.

###

Paper: W.-L. Liang, G.-D. J. Su, "Design of a high-efficiency train headlamp with low power consumption using dual half-parabolic aluminized reflectors," Applied Optics, Volume 57, Issue 6, 1305-1314 (2018). DOI: 10.1364/AO.57.001305

About Applied Optics

Applied Optics publishes in-depth peer-reviewed content about applications-centered research in optics. These articles cover research in optical technology, photonics, lasers, information processing, sensing and environmental optics.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society randersen@osa.org
1-202-416-1443

Joshua Miller
The Optical Society
jmiller@osa.org
1-202-416-1435

http://www.osa.org 

Joshua Miller | EurekAlert!

Further reports about: LED LEDs energy savings light source low power consumption optics

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>