Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One light pulse escapes from the other while changing its color

16.04.2018

Scientists from Hamburg University of Technology (TUHH), ITMO-University St. Petersburg, Menoufia Uni-versity, University of York, University of St. Andrews, Tyndall-Institute Cork, Sun Yat-sen University Guang-zhou, and Helmholtz-Zentrum Geesthacht realized a novel effect in silicon based optical waveguide chips which were particularly designed and fabricated for this nanophotonic experiment. In a special dispersion engineered photonic crystal waveguide a pump light pulse of duration of only six trillionths of a second chases a second slower signal light pulse.

When the pump pulse reaches the signal pulse, upon interaction, the signal pulse accel-erates, changes its frequency, respectively its color, and finally escapes from the pump pulse in forward direction.


Figure 1: Left (a): Schematic representation of the indirect photonic transition using a band diagram. Solid line: dispersion function of the un-switched photonic crystal waveguide ahead of the moving front. Dashed line: dispersion function of the switched photonic crystal waveguide behind the moving front. Right (b): Schematics of the photonic crystal waveguide (silicon: grey. holes: white). The probing signal with lower frequency (red) stays in the un-switched waveguide, changes its color and accelerates in forward direction (blue). The approaching pump pulse forms a front and the free charge carriers are staying behind the front as a trail (orange). All signals have wavelengths in the vicinity of 1550 nm in the near infrared. Photo: TUHH

This novel effect is related to the “event horizon” concept which theoretical physicists use to describe the vicini-ty of black holes where this limit marks the “point of no return” of photons.

No light particle inside can cross this event horizon to reach the outside world and all these photons are inevitably consumed by the black hole. Such walls for light and changes in the light velocity and color are non-existent in our everyday lives and can be ob-served under very special conditions, only.

How does this work?
The pump pulse generates free electrons in the silicon which creates a fast forward moving front. Since the charge carriers live long compared to the pump pulse duration they are staying behind the propagating front as a trail.

The conditions have been chosen by careful design of the waveguide such that the signal pulse cannot penetrate into the space behind the front and escapes in forward direction, instead. Since both the frequency and the wave number of the signal are changed, which is quite unusual, the effect is called an “indirect” photonic transition, which is now theoretically described, numerically modelled and experimentally verified.

Under the leadership of the Hamburg based researchers scientific insights of fundamental importance have been gained which, in addition, are crucial for applications in ultra-fast optical telecommunications.

As a result of the particular waveguide design, very strong effects can be realized with comparatively small pump power which makes this novel technique particularly attractive for “on-chip” frequency conversion and for all-optical switch-ing.

The work was published on 13.04.2018 in Nature Communications, one of the highest prestigious international scientific journals.
Publication:
Online: https://www.nature.com/articles/s41467-018-03862-0

Reflection from a free carrier front via an intraband indirect photonic transition, Mahmoud A. Gaafar, Dirk Jalas, Liam O’Faolain, Juntao Li, Thomas F. Krauss, Alexander Yu. Petrov, and Manfred Eich,
Nature Communications 9, 1447 (2018), doi 10.1038/s41467-018-03862-0

Further information:
Prof. Dr. Manfred Eich
Technische Universität Hamburg-Harburg (TUHH), Institut für Optische und Elektronische Materialien,
Eißendorfer Straße 38, D-21073 Hamburg
and
Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany,
Tel +49 40 42878 3147
E-Mail: m.eich@tuhh.de,
Website: www.tuhh.de/alt/oem/home.html

Jasmine Ait-Djoudi | idw - Informationsdienst Wissenschaft
Further information:
http://www.tuhh.de

More articles from Power and Electrical Engineering:

nachricht Magnetization reversal achieved at room temperature using only an electric field
22.02.2019 | Tokyo Institute of Technology

nachricht The holy grail of nanowire production
20.02.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>