Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019

Terahertz frequency laser paves the way for better sensing, imaging and communications

The terahertz frequency range - which sits in the middle of the electromagnetic spectrum between microwaves and infrared light -- offers the potential for high-bandwidth communications, ultrahigh-resolution imaging, precise long-range sensing for radio astronomy, and much more.


This is an artistic view of the QCL pumped THz laser showing the QCL beam (red) and the THz beam (blue) along with rotating N2O (laughing gas) molecules inside the cavity.

Credit: Arman Amirzhan, Harvard SEAS


Picture of the experimental setup showing the different components of the system and highlighting the path followed by the QCL light (red) and THz radiation (blue).

Credits: Arman Amirzhan, Harvard SEAS

But this section of the electromagnetic spectrum has remained out of reach for most applications. That is because current sources of terahertz frequencies are bulky, inefficient, have limited tuning or have to operate at low temperature.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with MIT and the U.S. Army, have developed a compact, room temperature, widely tunable terahertz laser.

"This laser outperforms any existing laser source in this spectral region and opens it up, for the first time, to a broad range of applications in science and technology," said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS and co-senior author of the paper.

"There are many needs for a source like this laser, things like short range, high bandwidth wireless communications, very high-resolution radar, and spectroscopy," said Henry Everitt, Senior Technologist with the U.S. Army CCDC Aviation & Missile Center and co-senior author of the paper.

Everitt is also an Adjunct Professor of Physics at Duke University.

While most electronic or optical terahertz sources use large, inefficient and complex systems to produce the elusive frequencies with limited tuning range, Capasso, Everitt and their team took a different approach.

To understand what they did, let's go over some basic physics of how a laser works.

In quantum physics, excited atoms or molecules sit at different energy levels -- think of these as floors of a building. In a typical gas laser, a large number of molecules are trapped between two mirrors and brought to an excited energy level, aka a higher floor in the building.

When they reach that floor, they decay, fall down one energy level and emit a photon. These photons stimulate the decay of more molecules as they bounce back and forth leading to amplification of light. To change the frequency of the emitted photons, you need to change the energy level of the excited molecules.

So, how do you change the energy level? One way is to use light. In a process called optical pumping, light raises molecules from a lower energy level to a higher one -- like a quantum elevator. Previous terahertz molecular lasers used optical pumps but they were limited in their tunability to just a few frequencies, meaning the elevator only went to a small number of floors.

The breakthrough of this research is that Capasso, Everitt and their team used a highly tunable, quantum cascade laser as their optical pump. These powerful, portable lasers, co-invented by Capasso and his group at Bell Labs in the 1990s, are capable of efficiently producing widely tunable light. In other words, this quantum elevator can stop at every floor in the building.

The theory to optimize the operation of the new laser was developed by Steven Johnson, Professor of Applied Mathematics and Physics at MIT, his graduate student Fan Wang and Everitt.

"Molecular THz lasers pumped by a quantum cascade laser offer high power and wide tuning range in a surprisingly compact and robust design," said Nobel laureate Theodor Hänsch of the Max Planck Institute for Quantum Optics in Munich, who was not involved in this research. "Such sources will unlock new applications from sensing to fundamental spectroscopy."

"What's exciting is that concept is universal," said Paul Chevalier, a postdoctoral fellow at SEAS and first author of the paper. "Using this framework, you could make a terahertz source with a gas laser of almost any molecule and the applications are huge."

The researchers combined the quantum cascade laser pump with a nitrous oxide -- aka laughing gas--laser.

"By optimizing the laser cavity and lenses, we were able to produce frequencies spanning nearly 1 THz," said Arman Amirzhan, a graduate student in Capasso's group and co-author of the paper.

"This result is one of a kind," said Capasso. "People knew how to make a terahertz laser before but couldn't make it broadband. It wasn't until we began this collaboration, after a serendipitous encounter with Henry at a conference, that we were able to make the connection that you could use a widely tunable pump like the quantum cascade laser."

This laser could be used in everything from improved skin and breast cancer imaging to drug detection, airport security and ultrahigh-capacity optical wireless links.

"I'm particularly excited about the possibility of using this laser to help map the interstellar medium," said Everitt. "Molecules have unique spectral fingerprints in the terahertz region, and astronomers have already begun using these fingerprints to measure the composition and temperature of these primordial clouds of gas and dust. A better ground-based source of terahertz radiation like our laser will make these measurements even more sensitive and precise."

###

The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

The research was co-authored by Fan Wang (MIT), Marco Piccardo (Harvard), and Steven G. Johnson (MIT). It was supported in part by the U.S. Army Research Office and by the National Science Foundation.

Media Contact

Leah Burrows
lburrows@seas.harvard.edu
617-496-1351

 @hseas

http://www.seas.harvard.edu/ 

Leah Burrows | EurekAlert!
Further information:
http://dx.doi.org/10.1126/science.aay8683

Further reports about: MIT SEAS electromagnetic spectrum lasers pump quantum cascade laser

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>